Soil and Groundwater Remediation using Reactive Nanoscale Iron Particles (RNIP)

What is RNIP?

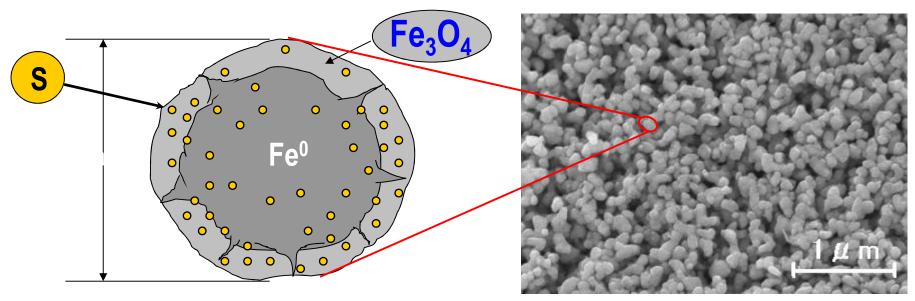


Fig. 1 Schematic RNIP structure Fig. 2 SEM image of RNIP

RNIP consists of metallic iron core (α -Fe) and magnetite shell (Fe_3O_4).

- Particle size; 70 nm
- Specific surface area; 30 m²/g

What is RNIP?

- > RNIP is processed in aqueous slurry.
 - Slurry Density; 1.25 g/ml
 - Solid concentration; 25 wt.%
 - Slurry Viscosity; 600~700 mPa•s
- > Slurry of RNIP is diluted by several to one hundred times in use.

Dilution viscosity; <10 mPa s

Fig. 3 Slurry of RNIP

What is RNIP?

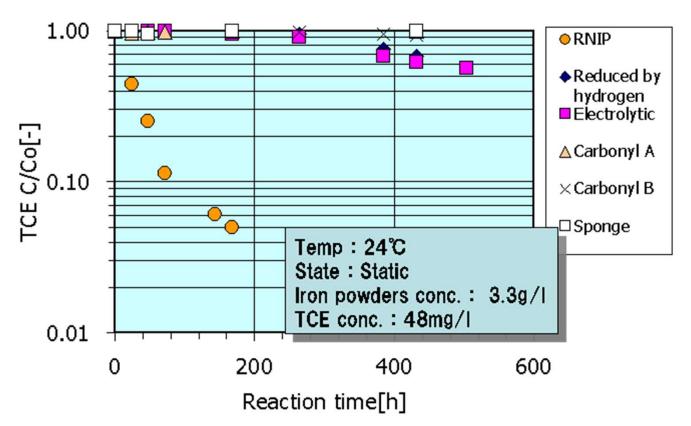
We have produced RNIP slurry of 60 tons per month at our Higashi-hiroshima plant since 2017.

Fig. 4 Higashihiroshima plant

- Site area
 ca. 4,000m²,
 built in October 2017
- Production capacity60 tons/month(Max 90 tons/month)

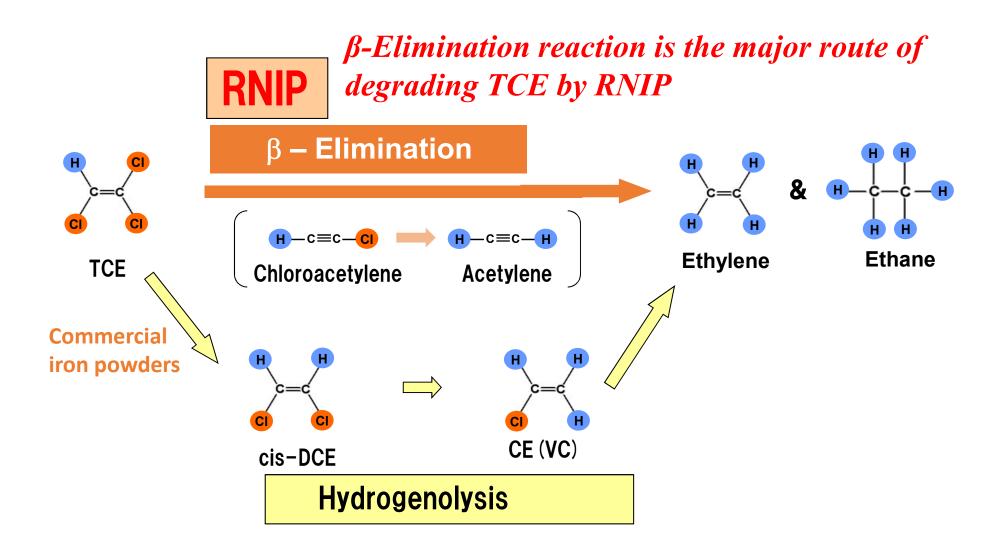
Packaging product

1m³
SUS container



200L Drum can

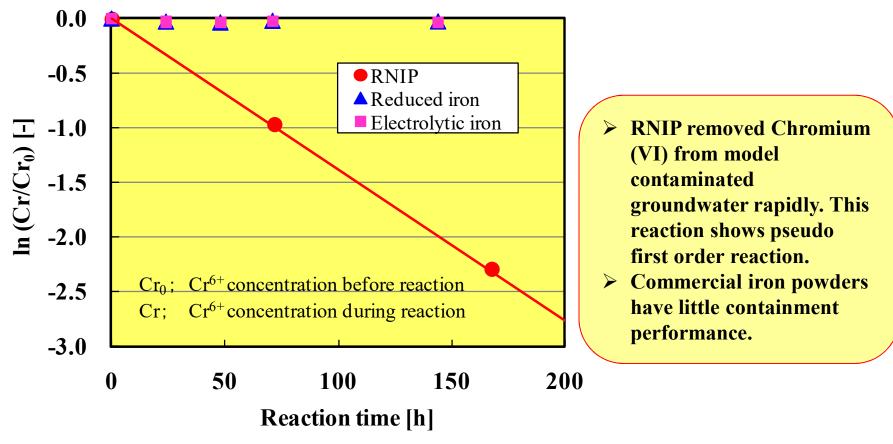
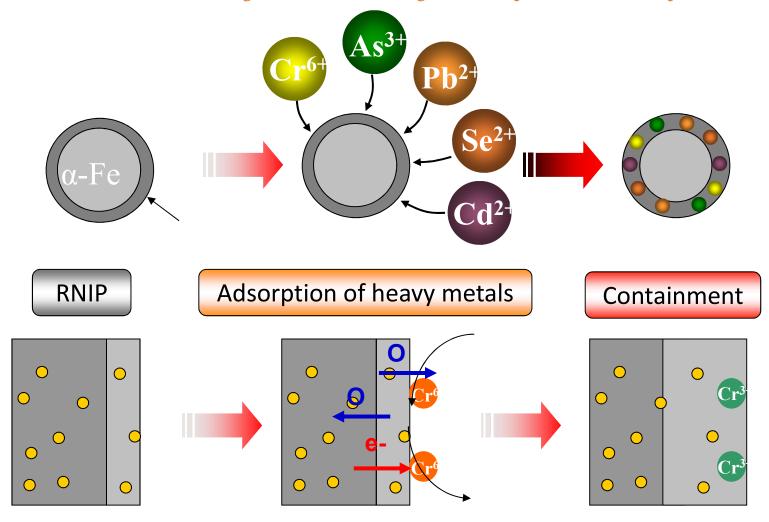
20L Plastic container

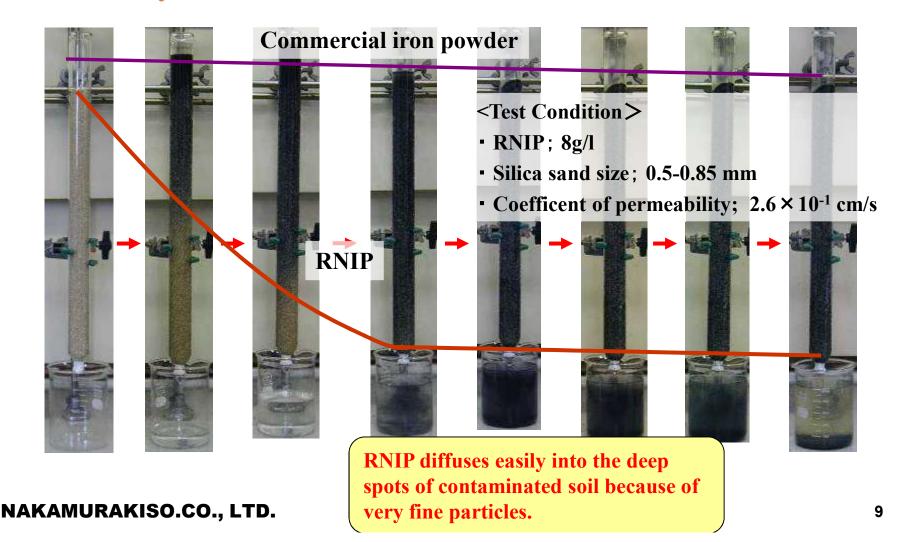

1)TCE (Trichloroethylene) remediation performance

- > Dechlorination reaction rates of iron particles can be expressed as a pseudo first order reaction.
- ➤ The reaction rate of RNIP is much greater than that of commercial iron powders by 100 times.

Fig. 5 TCE Decomposition rate by RNIP compared with another iron materials

2 Heavy metals containment performance

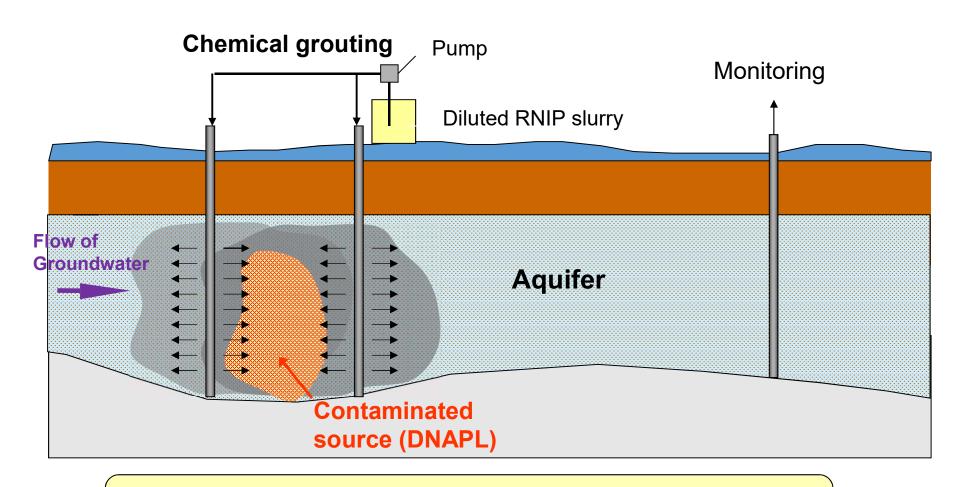




Fig. 6 Reaction rates of removal of Cr⁶⁺ by RNIP compared with commercial iron powders

Reaction schematic of removal of heavy metals by RNIP

3 High mobility performance for in-situ remediation Mobility test with saturated soil

4 Harmless materials Elution test of RNIP


Element **Elution Value Japanese** of RNIP Regulation Cd < 0.001 ≤ 0.01 [mg/l] Total-CN [mg/l] Not detected Not detected Pb < 0.005 ≤ 0.01 [mg/l] Cr6+ < 0.04 ≤ 0.05 [mg/l] < 0.001 ≤ 0.01 As [mg/l] Total-Hg [mg/l] < 0.0005 ≤ 0.0005 < 0.002 ≤ 0.01 Se [mg/l] F < 0.5 ≤ 0.8 [mg/l]< 0.1 **≤** 1 B [mg/l]Total-Cr [mg/l] **<** 0.1 **<** 0.1 Mn [mg/l]

Content test of RNIP

Element		Content Value of RNIP	Japanese Regulation	
Cd	[mg/kg]	< 2	≦ 150	
Total-CN	[mg/kg]	< 5	≦ 50	
Pb	[mg/kg]	< 5	≦ 150	
Cr6+	[mg/kg]	< 5	≦ 250	
As	[mg/kg]	< 1	≦ 150	
Total-Hg	[mg/kg]	< 1	≦ 15	
Se	[mgkg]	< 1	≦ 150	
F	[mgkg]	< 20	≤ 4000	
В	[mg/kg]	< 20	≦ 4000	

- > RNIP is no toxicity and quite safety.
- ➤ It does not cause a secondary environmental pollution using RNIP.

In-situ Remediation process by RNIP with Grouting Method

- **➤**This process is very easy and simple.
- ►It is not necessary to use special or large-scaled equipments.

Site Remediation example in Japan

Old machine factory site

- The remediation site was adjacent to a road and encompassed a volume of 136m³.
- ➤ The groundwater table at the site fluctuated between 2 to 4 meters below ground surface.
- ➤ The site soils consist of silty sand and gravel with coefficent permeability of 10⁻³~10⁻⁴ cm/s.
- The maximum TCE concentration in soil was about 0.2 mg/L.

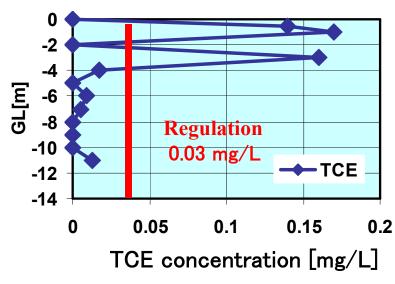
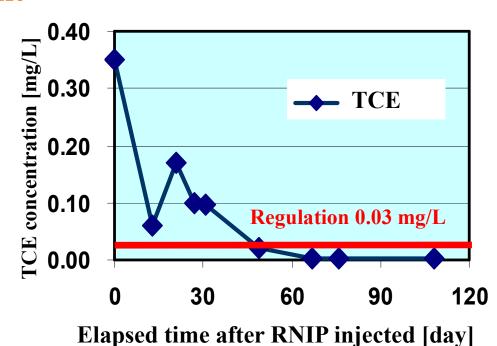


Fig. 7 TCE concentration profile


Site Remediation example in Japan

Test condition and result

<Condition>

➤ The injected RNIP concentration was 5 kg/m³ soil.

<Result>

➤ The remediation was finished in 56 days

Fig. 8 TCE concentration behavior after RNIP injection

Summary

- \triangleright RNIP consists of metallic iron core (α-Fe) and magnetite shell (Fe₃O₄) and has an average size of 70 nm.
- ➤ The VOC remediation performance of RNIP is much greater than that of commercial iron powders by 100 times.
- > RNIP also has a high performance for containing heavy metals such a Chromium (VI).
- > RNIP has a high mobility performance and is suited for insite rapid remediation using the chemical grouting method.
- > RNIP is no toxicity and quite safety. Therefore, it does not cause a secondary environmental pollution using RNIP.
- ➤ It is an issue in the future to improve the further decomposition performance of RNIP for persistent organic compounds such as dioxins.

Our Soil & Groundwater Remediation

	Excavatio n & Removal	In Situ Remediation				
		Injection of RNIP	Mixing of RNIP or Iron	Bio Remediation	Chemical Oxidation	
Schematic Figure or Picture	Contaminated soil			P Nutrients or Electron Donors P Polluted Source	Chemicals	
Target Contaminants	VOC Heavy Metals	VOC Heavy Metals	VOC	VOC•Oil Cyanide	VOC Cyanide	
Certainty	0	0	Δ	Δ	0	
Environmental Benign	Δ	0	0	Δ	Δ	
Work Period	0	0	Δ	Δ	0	
Cost	Δ	0	0	0	0	

Acknowledgement

Thank You for Your Kind Attention

207 Sadasue Kamitakeni Fukutomicho Higashihiroshimashi, Hiroshima, 739-2301 Japan

TEL +81-82-286-1079 FAX +81-82-285-7834 URL http://nakamurakiso.co.jp/

