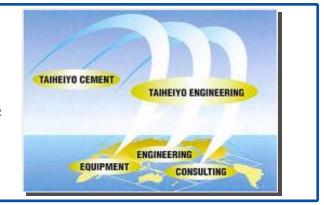

Taiheiyo Two-Stage Combustion System


- For Low NOx Emission -

Taiheiyo Engineering Corporation

TAIHEIYO ENGINEERING has gained extensive Knowhow and advanced technology as part of the TAIHEIYO CEMENT GROUP and provides the consultancy, engineering services and special equipment necessary for the construction and operation of cement plants and cement related industries.

Company Profile

Company Name	TAIHEIYO ENGINEERING CORPORATION
Established	April 1, 1976
Address	SA Building, 5th Floor, 2-17-12 Kiba, Koto-ku, Tokyo 135-0042, Japan
Capitalization	Paid-in Capital: 490 million Japanese Yen
Number of Employees	173 as of April 1, 2021

🗊 Taiheiyo Engineering

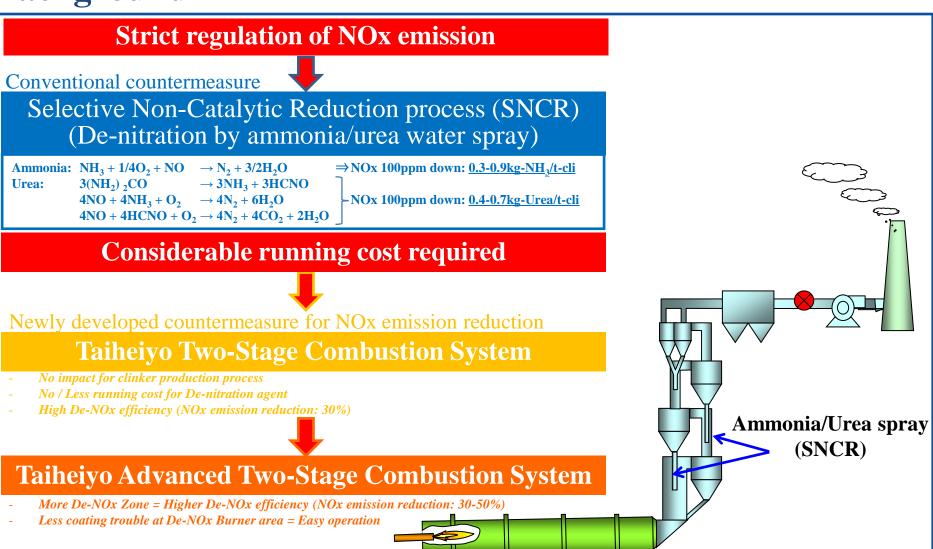
Unique Characteristics of Taiheiyo Engineering

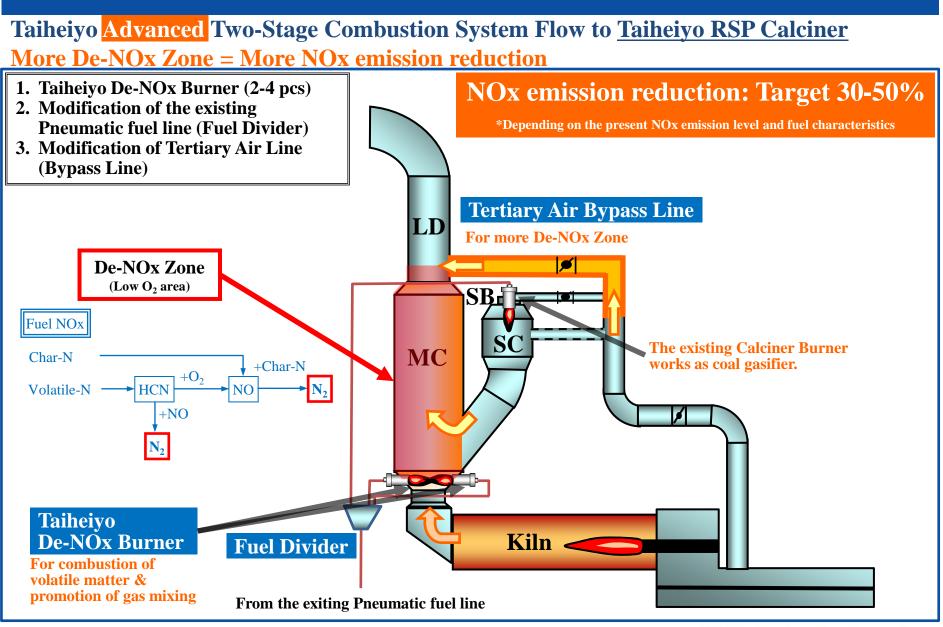
<u>Cement Producer</u> Same viewpoint of the client

Engineering

O New Plant
O Plant Expansion
O Plant Modification
O Quarry Development etc.

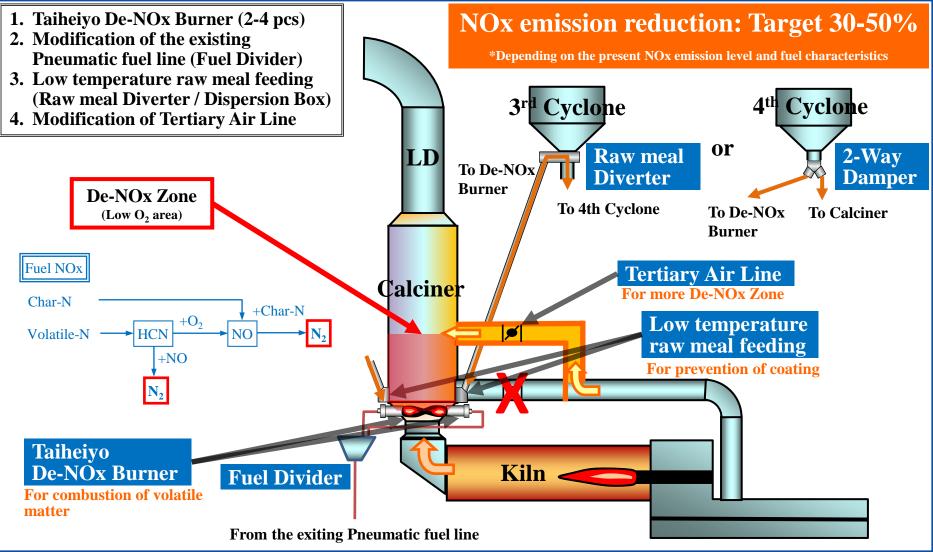
Consulting O Feasibility Study O Tendering O Supervision O Plant Diagnosis etc.


Technologies


C Taiheiyo Chlorine Bypass
C Taiheiyo Thermal Reactor
C TMP Burner
C TCS System
O O-SEPA
O AVM etc.

🗊 Taiheiyo Engineering

Background



Taiheiyo Advanced Two-Stage Combustion System Flow to <u>In-Line Calciner</u> <u>More De-NOx Zone = More NOx emission reduction</u>

Reference List of Taiheiyo Two-Stage Combustion System

Year	County	Capacity	Calciner Type	Before Introduction	Before Introduction	After Introduction	Result
2013 Chi		4000 //1	RSP	Raw Material Feed (t/h)	307.9	310.0	NOx Reduction 50% (Regulation value: 390 ppm)
	China			NOx (O2: 10%) Stack outlet (ppm)	743	320 - 380*	
	China	4000 t/d		Kiln Feed end O2 (%)	4.0 - 4.4	2.9 - 3.2	
				SNCR Urea Consumption (m ³ /h)	0.65	0.0	
2014 Taiv			RSP	Raw Material Feed (t/h)	220-230	220-230	NOx Reduction 35%
	Taiwan	3200 t/d		NOx (O2: 10%) Stack outlet (ppm)	520-550	320 - 380	
		3200 t/d		PH outlet O2 (%)	0.7-0.9	0.7-0.9	
				SNCR Urea Consumption (m ³ /h)	Small quantity*	0.0	
2014 China		China 4000 t/d	RSP	Raw Material Feed (t/h)	266-286	267-291	NOx Reduction 33% Urea consumption reduction 50%
	China			NOx (O2: 10%) Stack outlet (ppm)	967*	560-740*	
	China			Kiln Feed end (%)	3.1-3.9	2.5-3.2	
				SNCR Urea Consumption (m ³ /h)	Average 1.27	Average 0.62	
2015 Taiwa			RSP	Raw Material Feed (t/h)	276	299	NOx Reduction 20%
	Taiwan	5000 t/d		NOx (O2: 10%) Stack outlet (ppm)	345	276	
		arwan 5000 t/d		Kiln Feed end (%)	2.2	4.0	
				SNCR Urea Consumption (m ³ /h)	0.0	0.0	
2015 N			0 t/d RSP	Raw Material Feed (t/h)	324	325	NOx Reduction 25% NOx 331ppm with SNCR operation
	Vietnam	Vietnam 4800 t/d		NOx (O2: 10%) Stack outlet (ppm)	815	609	
				Kiln Feed end (%)	2.9	5.5	
				SNCR Urea Consumption (l/h)	0.0	17.7*	
2016 Cł		China 5000 t/d	In-Line	Raw Material Feed (t/h)	415	383	Ammonia water consumption reduction 58%
	China 5			NOx (O2: 10%) Stack outlet (ppm)	200	200	
				Kiln Feed end (%)	-	-	
				Ammonia water Consumption (m3/h)	Average 1.68	Average 0.7	
2018 C	China	5000 t/d	RSP	Raw Material Feed (t/h)	430.3	429	Urea consumption reduction 31.7%
				NOx (O2: 10%) Stack outlet (ppm)	260-270	260-270	
				Kiln Feed end (%)	-	2.15	
				SNCR Urea Consumption (m ³ /h)	1.20	0.82	

Taiheiyo Two-Stage Combustion System

Thank you

Taiheiyo Engineering Corporation http://www.taiheiyo-eng.co.jp overseas_sales@taiheiyo-eng.co.jp