

Trends in Technologies for Utilizing CO₂ Derived from Thermal Power Plants and the Challenges of Applying them to the Civil Engineering Sector (Outline)

March 2024

The Task Force for the Research and Study of Civil Engineering Technologies for Utilizing CO₂ Derived from Thermal Power Plants, under the Subcommittee on New Technologies and Energy of the Energy Committee in the JSCE

The Task Force for the Research and Study of Civil Engineering Technologies for Utilizing CO₂ Derived from Thermal Power Plants (commonly abbreviated the Carbon Recycle Task Force; referred to as the "CR Task Force" in this document) was established under the Subcommittee on New Technologies and Energy of the Energy Committee in the JSCE.

The purposes of the activities of the CR Task Force are threefold as shown below:

- (1) Conduct research on civil engineering technologies that contribute to the dissemination and promotion of carbon recycling;
- (2) Study future social systems, business models, and value chains; and
- (3) Identify and organize technical challenges, as well as challenges related to systems, laws and regulations.

The CR Task Force carried out activities from July 2021 to September 2023 and published a report titled "Trends in Technologies for Utilizing CO_2 Derived from Thermal Power Plants and the Challenges of Applying them to the Civil Engineering Sector" (in Japanese).

https://committees.jsce.or.jp/enedobo0302/node/7

This material is the English translation of the composition of the CR Task Force, the table of contents of the report, the CO_2 countermeasure technologies related to the core content of the report (as mentioned in Item (1) above) in the concrete and cement sectors, and individual data on these technologies (Appendix) for the purpose of disseminating the outcomes of the task force's activities both domestically and internationally.

This material uses the same figure and table numbers as those in the report, and figures illustrating mechanisms are provided with reference page numbers from the report.

The copyright of this material (including the report) belongs to the Japan Society of Civil Engineers; however, inquiries regarding individual technologies should be directed to the respective companies.

Composition of the CR Task Force

Classification	Name	Affiliation and title	Remarks						
Secretary	Kinya Sakanishi	Senior Manager, Innovative Human Resources Department, the National Institute of Advanced Industrial Science and Technology							
Committee member and secretary	Tadashi Matsumoto	General Manager in Charge of the Domestic CCS Project Task, Corporate Planning & Administration Office, Corporate Planning & Administration Department, Electric Power Development Co., Ltd.							
	Tomoaki Oshiro	Power Generation and Operation Group Manager, Power Generation Department, Power Generation Division, the Okinawa Electric Power Company, Incorporated	Until June 2022						
	Kaname Ishikawa Power Generation and Operation Group Manager, Power Generation Department, Power Generation Division, the Okinawa Electric Power Company, Incorporated								
	Noriharu Onishi	Senior Manager, Second Civil Engineering Marketing Department, Civil Engineering Division, Nishimatsu Construction Co., Ltd.							
	Hiroo Oyama	Manager, Project Promotion Department, Civil Engineering Management Division, Kajima Corporation							
Committee member	Seiji Kato	Seiji Kato Chief Researcher, Civil Engineering Group, Power Technology Research Institute, Technology Development Division, Chubu Electric Power Co., Inc.							
	Ryoma Kitagaki	Associate Professor Laboratory of Building Materials, Research Group of Structural Engineering and Materials							
	Chikao Sannou	General Manager, Civil Engineering Technology Team, Civil and Architectural Engineering Department, Hokuriku Electric Power Company							
	Takehiro Shibuya	Chief of Civil & Architectural Engineering Management Unit, Civil & Architectural Engineering Group, O&M E Operation Division, JERA Co., Inc.							
	Noriaki Shimizu	General Marketing Manager, Business Development & Marketing Division-Civil Engineering, Shimizu Corporation	Until March 202						
	Makoto Takagi	General Marketing Manager, Business Development & Marketing Division-Civil Engineering, Shimizu Corporation							
	Akiro Shimota	Research Counselor, Meteorology and Fluid Science Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry							
	Takeshi Takagi	Deputy Chief, Civil and Architectural Engineering Department (Civil and Architectural Engineering Business), Tohoku Electric Power Co., Ltd.							
	Yuji Tsubota	Deputy Chief, Renewable Energy and Civil Engineering Management Group, Power Generation Division, the Chugoku Electric Power Co., Inc.							
	Yoshiyuki Matsumoto	Energy Business Development Department Manager, Business Development Division, Hazama Ando Corporation							
Observer	Hiroshi Tsuchiya	Head of Carbon Recycle Office, Commissioner's Secretariat, Agency for Natural Resources and Energy, the Ministry of Economy, Trade and Industry	Until June 2022						
Observer	Yumiko Hata	Director, Carbon Management Division, Natural Resources and Fuel Department, Agency for Natural Resources and Energy, the Ministry of Economy, Trade and Industry	From July 2022						
Dbserver (Chairperson of ne Subcommittee on New echnologies and Energy)	Yasuhide Yamada	Executive Officer (Environment and Energy), Corporate Planning Division, Shimizu Corporation							
bserver (Secretary of the Subcommittee on New	Yohei Sumikawa	Team Leader, Planning Group, Civil & Architectural Engineering Management Office, Engineering Strategy Unit, Tokyo Electric Power Company Holdings, Inc.	Until August 202						
echnologies and Energy)	Masayuki Masuda	Senior Researcher, Energy & Environment Division, R&D Department, TEPCO Research Institute, Tokyo Electric Power Company Holdings, Inc.	From June 2022						

* The names, affiliations and titles of the committee members are based on those at the time of the 10th subcommittee meeting (September 28, 2023).

* When a committee member is replaced, the affiliation and title of the outgoing member are those at the time of the replacement, and the affiliation and title of the new member are as listed above.

Trends in Technologies for Utilizing CO₂ Derived from Thermal Power Plants and the Challenges of Applying them to the Civil Engineering Sector

- 1. Introduction
- 2. Trends in CR toward Carbon Neutrality by 2050
 - 2.1 Climate Change Issues
 - 2.2 Trends in United Nations Framework Convention on Climate Change
 - 2.3 CR-Related policies in Japan
 - 2.3.1 Japan's Climate Change Measures
 - 2.3.2 CR-Related Policies as Measures against Global Warming
 - 2.3.3 Japan's CR Promotion Projects
 - 2.3.4 International Cooperation in the CR Field
 - 2.3.5 Future Policy Challenges
 - 2.4 Trends in Overseas CR-Related Policies and International Frameworks
- 3. CR-Related Civil Engineering Technologies
 - 3.1 Technological Area of CR
 - 3.1.1 Classification of CR Technologies
 - 3.1.2 Positioning of Civil Engineering Technology
 - 3.2 Technologies in the Concrete and Cement Sectors
 - 3.2.1 Introduction of Domestic and Overseas Technologies
 - 3.2.2 Technologies Related to CO₂ Absorption and Utilization
 - 3.2.3 Technologies Related to CO_2 Reduction
 - 3.2.4 Summary of Technologies Related to CO_2 Absorption, Utilization and Reduction

- 3.3 Civil Engineering Technologies Related to CO₂ Reduction
 - 3.3.1 Fly Ash Utilization
- 3.3.2 CCS
- 3.3.3 Blue Carbon
- 3.4 Related Technologies for CR
 - 3.4.1 CO₂ Direct Air Capture Technology (DAC)
 - 3.4.2 Energy Supply in CR
- 4. Toward Social Implementation of CR Technologies
 - 4.1 Promotion of Technology Development
 - 4.1.1 Overview of CR Technologies and Key Technology Development Items
 - 4.1.2 Examples of Financial Support for Technology Development in Various Countries
 - 4.2 Establishment of Business Models and Value Chains
 - 4.3 Site Selection and Development of Transportation Facilities for CR Projects
 - 4.4 Legal Systems and Incentive Design
 - 4.4.1 Standardization and LCA Evaluation
 - 4.4.2 Incentive Policies
- 5. Conclusion

Appendix

Introduction of CO₂ Countermeasure Technologies in Concrete and Cement Sectors

Chapter 3 CR-Related Civil Engineering Technologies

- 3.1 Technological Area of CR
- 3.1.1 Classification of CR Technologies
- (1) Expected CO₂ capture methods
 - a) Low CO₂ Concentration in the Atmosphere: Direct Air Capture (DAC)
 - b) High CO₂ Concentration in Exhaust Gas: Carbon Capture (CC)
- (2) Methods of storing and utilizing CO_2
 - a) Simple storage of CO₂: Storage (S)
 Use of a storage device whose sole purpose is continuous management of the input and output of CO₂.
 - b) Utilization associated with storage of CO₂: Utilization and Storage (US) A method that uses structures or structural members capable of providing additional services.
- (3) Treatment of CO_2 after storage and utilization
 - a) CO_2 can be released as a gas with the expectation that it will be recaptured. (Production of synthetic resins or bioethanol using CO_2)
 - b) CO₂ can be fixed for a long period in one place while exerting functions beyond storage.

(Incorporation into artificial minerals like cement and concrete, natural minerals like soil, or plants (e.g., wood and algae))

In the construction field: DAC + CC + US \Rightarrow DACCUS \Rightarrow CCUS

- 3.1.2 Positioning of Civil Engineering Technology
- (1) DACCUS and CCUS

DACCUS	CCUS
DAC Coat and CCC (C ⁴ S)	25 other technologies

(2) Comparison between DAC and CC

	DAC	CC
CO ₂ concentration	Low concentration	High
Applies to	Atmosphere	Thermal power plant and other facilities
CO ₂ fixation	Low	High

(3) Evaluation method

Current method (in the report)	LCA
Net CO_2 emission reduction	Net CO_2 fixation in identical products,
compared to the CO_2 emissions from	calculated by subtracting the CO_2
conventional products with identical	emissions during the production or
functions, excluding the shipping and	treatment of the products from the
transportation of the products.	amount of CO_2 fixed in the products.

- Decrease in CO₂ emission reduction due to the reduction in CO₂ emissions during the onshore transportation of products (influence of onshore transportation).
- In the cement and concrete sectors, calcium silicate and calcium aluminate consume a large quantity of CO₂ through CO₂ fixation, which leads to enhanced strength and durability of the concrete (technological innovation).
 Commercialization of CCUS products that can reduce CO₂ emissions as much
 - as possible.

To continuously motivate ongoing efforts toward reducing CO_2 emissions, net CO_2 emission reductions from conventional products with identical functions, excluding shipping and transportation, have been established as an evaluation criterion.

- 3.2 Technologies in the Concrete and Cement Sectors
- 3.2.1 Introduction of Domestic and Overseas Technologies
- (1) Trends in CR overseas

Table 3.2-1 Selection of prospective candidate technologies for carbonate production

Evaluation criteria	1. Direct utilization of exhaust gas from thermal power plants	2. Development stage (maturity of technology)	3. Feasibility of the design of commercial scale plants	4. CO₂ emission reduction	5. Economic performance	6. Marketability	Rating
1. GreenOre	Ø	0	Ø	0	0	Ø	12
2. O.C.O. Technology	0	Ø	Ø	0	0	Ø	12
3. Blue Planet	Ø	Ø	0	Δ	Δ	Δ	7
4. Solidia	0	Ø	Ø	0	Δ	0	9
5. CarbonCure	0	Ø	Ø	Δ	0	0	9
6. Carbon Capture Machine	Ø	Δ	0	Δ	Δ	Δ	4
7. Carbon Upcycling UCLA	Ø	Δ	0	0	Δ	0	6
8. Mineral Carbonation	0	Ø	0	Δ	Δ	0	6

Point allocation: \bigcirc Excellent = 3 points, \bigcirc Good = 1 point, \triangle Normal or inferior = 0 points

<u>Source:</u> Summary of the "Feasibility Study on Overseas Carbon Recycle Technologies" for the Study on the Advancement of Overseas Coal Development under the 2019 Overseas Coal Development Support Project, 2020 by the Japan Organization for Metals and Energy Security (JOGMEC).

9

(2) Domestic trends in CR (Pages 35 to 54 of the main text)

Table 3.2-2 List of CR technologies in Japan

No.	CO ₂ countermeasure technologies	Company or organization that introduces the technology
(1)	CO ₂ -SUICOM	Kajima Corporation
(2)	CO ₂ -TriCOM	The Chugoku Electric Power Co., Inc.
(3)	DAC Coat	Shimizu Corporation
(4)	Concrete using carbonated recycled aggregate	Tokyo Electric Power Company Holdings, Inc.
(5)	CarbonCure	Mitsubishi Corporation
(6)	T-Carbon Mixing	Taisei Corporation
(7)	O.C.O Technology Limited	Kobelco Eco-Solutions Co., Ltd. and Mitsubishi Corporation
(8)	Blue Planet	Mitsubishi Corporation
(9)	CCC (C ⁴ S Project)	The University of Tokyo and Hokkaido University
(10)(15)(24)(26)	T-eConcrete series	Taisei Corporation
(11)	Clean-Crete N	Obayashi Corporation
(12)	SUSMICS-C	Shimizu Corporation
(13)	LigninCrete	Obayashi Corporation
(14)	ECM Concrete	Kajima Corporation
(16)	Super Green Concrete	Maeda Corporation
(17)	LHC (Low Carbon High-performance Concrete)	Hazama Ando Corporation
(18)	BBFA High Strength Concrete	Hazama Ando Corporation
(19)	Ashcrete	Hazama Ando Corporation
(20)	Geopolymer (Geopoly)	Nishimatsu Construction Co., Ltd.
(21)	AAM Concrete	Nishimatsu Construction Co., Ltd.
(22)	Cast-in-place Geopolymer (PolymerCrete)	Obayashi Corporation
(23)	Sustain-Crete	Sumitomo Mitsui Construction Co., Ltd.
(25)	Clean-Crete	Obayashi Corporation
(27)	Slagrete	Toda Corporation

 Classification of technologies related to CO₂ absorption and utilization (Page 38 of the main text)

Figure 3.2-1 Technologies for CO₂ absorption and utilization

Classification of technologies related to CO₂ emission reduction (Page 38 of the main text)

Figure 3.2-2 Technologies for CO₂ emission reduction

 Example 1 - Technology to make concrete directly absorb CO₂: CO₂-SUICOM (Page 40 of the main text)

(1) CO₂-SUICOM

Figure 3.2-3 How CO₂-SUICOM works

 Example 2 - Technology to mix CO₂ into concrete during its production: T-Carbon Mixing (Page 42 of the main text)

Figure 3.2-4 How T-Carbon Mixing works

• Example of technology that incorporates CO₂ as calcium carbonate: O.C.O Technology (Page 43 of the main text)

(7) O.C.O Technology

Figure 3.2-5 How O.C.O Technology works

• Example of technology that uses biochar: SUSMICS-C (Page 45 of the main text)

Figure 3.2-6 How SUSMICS-C works

• Example of technology that partially replaces cement with fly ash: ECM Concrete (Page 47 of the main text)

Name of technology	ECM Concrete			Serial number	T-001							
Name of company with the technology	Kajima Corporation and Tak	Kajima Corporation and Takenaka Corporation										
	Constituent materials	Applicability		Remarks								
	Cement	0										
	Fly ash	_										
	Blast furnace slag	0	Replaceme	Replacement of 60 to 70% of conventional cement								
	Silica fume	—										
Compositional summary	Other	0	Use of gyp	Use of gypsum								
	CO ₂ reduction	on rate	Approxima	Approximately 60%								
	Acquisition of the building material technical performance certificate (GR Material Performance Certificate No. 13-11, Revision No. 2 by the Gene Building Research Corporation of Japan)											

(1) ECM (Energy, CO₂, Minimum) Concrete

Figure 3.2-7 Composition of ECM Concrete

• Example of technology that does not use cement at all: Geopolymer (Page 50 of the main text)

(7) Geopolymer (Low-carbon concrete)

Name of technology	Geopolymer (Low-carbon co	oncrete)		Serial number	T-007							
Name of company with the technology	National Institute of Technology, Oita College, Yamaguchi University, NIHON KOGYO CO., LTD., and Nishimatsu Construction Co., Ltd.											
	Constituent materials	Applicability		Remarks								
	Cement	_	Not applica	able								
	Fly ash	0	As alkali si	As alkali silica powder								
	Blast furnace slag	0	As alkali silica powder									
	Silica fume	_										
Compositional summary	Other	0		An alkali silica solution in which water glass and caustic soda are mixed								
	CO ₂ reduction	on rate	Approximately 80% (MAX)									

Figure 3.2-8 Composition of Geopolymer

(12) Clean-Crete

• Example of technology that replaces a significant portion of the cement with blast furnace slag: Clean-Crete (Page 52 of the main text)

Name of company with the C technology	Obayashi Corporation			Serial number	T-012				
	Constituent materials	Applicability		Ren	narks				
	Cement	0		acement of conver ag and fly ash	ntional cement with blast				
	Fly ash	0							
	Blast furnace slag	0							
	Silica fume	_							
Compositional summary	Other	0							
	CO ₂ reductio	n rate	Approximately 80%						

Figure 3.2-9 Composition of Clean-Crete

Table 3.2-3 List of technologies for CO₂ absorption, utilization, and reduction (Page 54 of the main text)

	Applicable or possibly applicable * Under development																																					
Classificatio	0.1		Name of technology	Developing company or		evelopment sta				Application		Obsciences		Type of t	echnology			C02	absorption (fix	ation)				ig of CO ₂ abso	-		Cerre	nt reduction a	mount		1	ure used			Oth	er materials u	sed	
Classificatio	n Category	No.	Name of technology	organization	Laboratory test	Test construction	Actual construction	Cast-in-place (plain) concrete	Cast-in-place (reinforced) concrete	Precast product(plain)	Precast product (reinforced)	Other (growing base and embasisment materials)	Absorption	Utilization	Reduction	Zero emission or less	Atmosphere	Exhaust gas	Liquid CO ₂ , etc.	CO ₂ cylinder	Other	Before kneeding	During kneading	During curing	During service after curing	Other	100%	50% or more	Less than 50%	Blast fumace slag	Fly ash	y-C ₂ S	Calcium carbonate	Biochar	Lignin	Amine or amino acid	Aumine silice S	Silice fume
		(1)	CO ₂ -SUICOM	Kajima Corporation, the Chugoku Electric Power Co., Inc., and Denka Company Limited			0	*	*	0	*		0	0	0	0		0		0				0				0		0	0	0						
		(2)	CO _{2*} TriCOM	The Chugoku Electric Power Co., Inc., Hinsshima University, and Chugoku Koatsu Concrete Industries Co., Ltd.	0							0	0	0	0			0				0							0		0		0					
	Direct absorption	(3)	DAC Cost	Shimizu Corporation and Holikaido University		0		0	0	0	0		0				0	0							0				0						0			
		(4)	Concrete using carbonated recycled aggregate	Tolyo Electric Power Company Holdings, Inc.	0	*		*	*	*	*		0	0				0				0																
	Input during production	(5)	CarbonCure	Carbon Cure Technologies, Mitsubishi Corporation			0	0	0	0	0			0	0				0				0						0									
		(6)	T-Carbon Mixing	Talsei Corporation	0			*	*	*	*		0				*	*	*	*			0				0			0	0		0					
Absorption series		(7)	0.0.0	0.C.O TechnologyLimited			0	0	0	0	0			0	-	0		0				0							0				0				\square	
		(8)	Blue Planet	Blue Planet Systems and Mitsubishi Corporation		0		0	0	0	0		0	0		0			0	0		0							0				0		\square		\square	
	Input of calcium carbonate material	(9)	CCC (C ⁴ S Project)	The University of Tokyo and Holikaido University	0			0	0	0	0			0	-	0	0						0						0				0		\vdash		\square	
		(10)	T-eConcrete (Carbon-Recycling)	Taisei Corporation			0	0	0					0		0		0					0				0			0	0		0		\square		\vdash	
		(11)	Clean-Crete N	Obayashi Corporation			0	0	0	0	0			0	0	0		0					0					0		0	0		0		\vdash		\vdash	
	Input of biochar	(12)	SUSMICS-C	Shimizu Corporation Obayashi Corporation,			0	0	0	0	0			0		0	0?				0?		0						0	0				0	\vdash		\vdash	
		(13)	LigninCrete ECM Concrete	Obayashi Corporation, Nepon Paper Industries Co., Ltd., and Flowric Co., Ltd. Kajima Corporation and		0	0	0 0	0	0				0	0		0				0		0					0		0	0				0		\vdash	
		(14)	T-eConcrete	TakanakaCorporation			0	0	0						0													0	0	0	0				\vdash		\vdash	
		(16)	(fly ash utilization type) Super Green Concrete	Maeda Corporation			0	0	0						0													0	0	0	0				\vdash		\vdash	
	Partial replacement with fly ash	(17)	LHC (Low Carbon High-performance Concrete)	Hazama Ando Corporation			0	0	0	0	0				0														0	0	0				\vdash			
		(18)	BBFAHigh Strength Concrete	Hazama Ando Corporation			0	0	0	0	0				0														0	0	0							
		(19)	Ashcrete	Hazama Ando Corporation			0	0		0					0														0	0	0			0				
Deter.		(20)	Geopolymer	Nishimatsu Construction Co., Ltd., National Institute of Technology, Olta College, and Niton Kogyo Co., Ltd.		0				0					0												0			0	0					0		
Reduction series		(21)	AAM Concrete	Nishimatsu Construction Co., Ltd., JFE Steel Corporation, Tohoku University, and Nihon University			0	0	0	0	0				0												0			0								
	No cement use	(22)	Cast-in-place Geopolymer (PolymerCrete)	Obayashi Corporation and Pozzolith Solutions Ltd.			0	0	0						0												0			0	0							0
		(23)	Sustain-Crete	Sumitomo Mitsui Construction Co., Ltd.	0	0	0	0	0	0	0				0													0	0	0	0						0	
		(24)	T-eConcrete (Zero-Cement type)	TaiseiCorporation			0	0	0	0	0				0												0			0			0					
		(25)	Clean-Crete	Obayashi Corporation			0	0	0	0	0				0													0		0	0				Ш			0
	Significant replacement with blast furnace slag	(26)	T-eConcrete (Building Standards Act compliant type)	Taisei Corporation			0	0	0						0													0		0								
		(27)	Slagrete	Teda Corporation and Nishimatsu Construction Co., Ltd.			0	0	0						0													0		0								