Company Overview

Developed as Porous and Electric Charged Material for next generation

Presenter: Sean Shunsuke KUMAGAI Environmental Counselor: Ministry of Environment, Government of Japan JP

Our Basic Concept: 3R as Venous Industrial for next generation

We move to tap transformative power of science, technology and innovation to achieve Sustainable **Development Goals.**

Reduce

CircuLite

3R

Reduce Waste Ashes

Recycled as Raw Material

There is no method to

landfill the Waste Ashes Safety

Reuse

Recycled Material

Contribute to **Environment**

Solutions Business all over the world

Recycle: Technology

Recycled Waste Ashes to

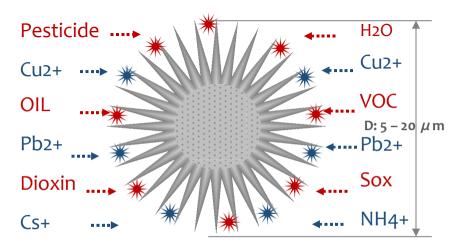
Multi-Functional Material

Section-01

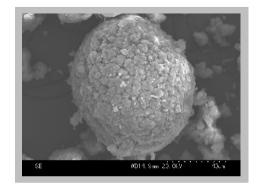
Introduce outline of our Skill and Products

1-1. Technical Outline: Residues Recycling Technology to Multi-Functional Material: CircuLite

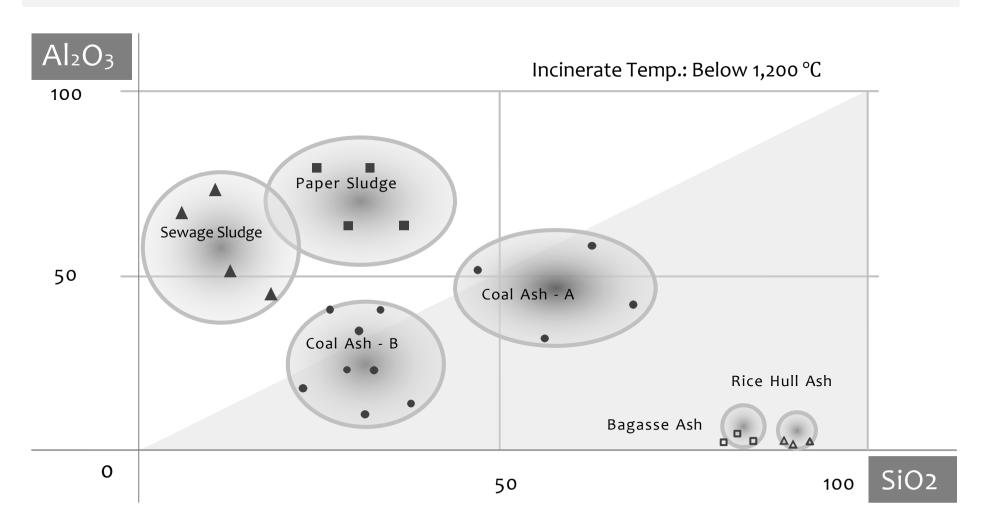
Carbide, Ash, Residues


: Included SiO2 + Al2O3 + Harmful Materials

Spherical object
No Function
Case: By-Product


Crystallized Surface of Ash By our Original Technology as Venous Industrial System CircuLite: CaO+SiO2+Al2O3+nH2O + a

■: Physical Adsorption ■: Chemical Adsorption



1-2. Technical Outline: Main Components of various Carbide, Ash as raw material of CircuLite

1-3. Application Technology – Available types of Raw Materials as CircuLite

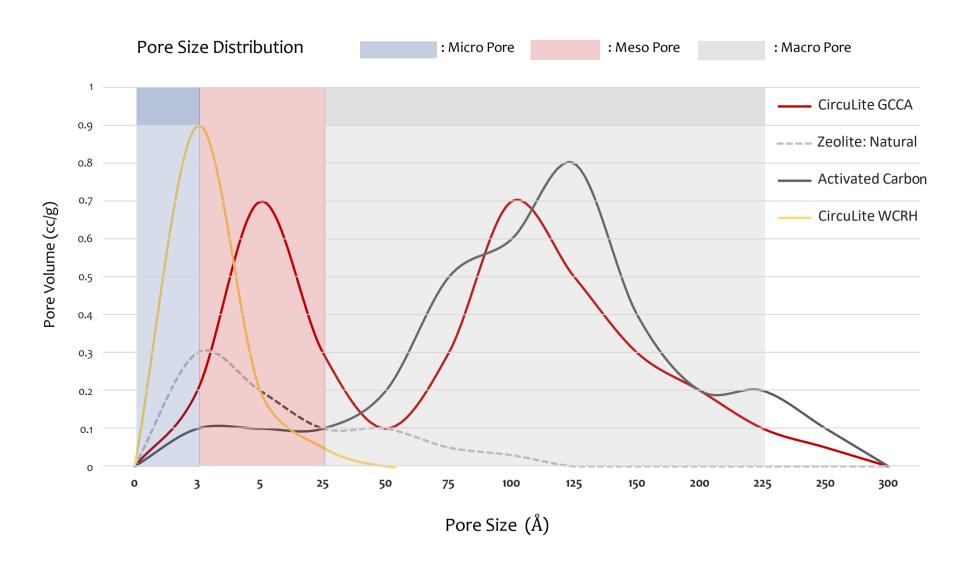
1.	Unused Materials	Coal Ash	Rice Husk Carbide or Ash	Bagasse Carbide or Ash	
2.	Producer	ducer - Power Plant - Biomass Power Plant		- Biomass Power Plant	
3.	Main Components	- Silicon, Aluminum	- Silicon	- Silicon	
4.	Classification	Fossil Fuel	Renewable Energy	Renewable Energy	
5.	Combustion Temp	approx. 1,000 °C	approx. 800 °C	approx. 750 °C	

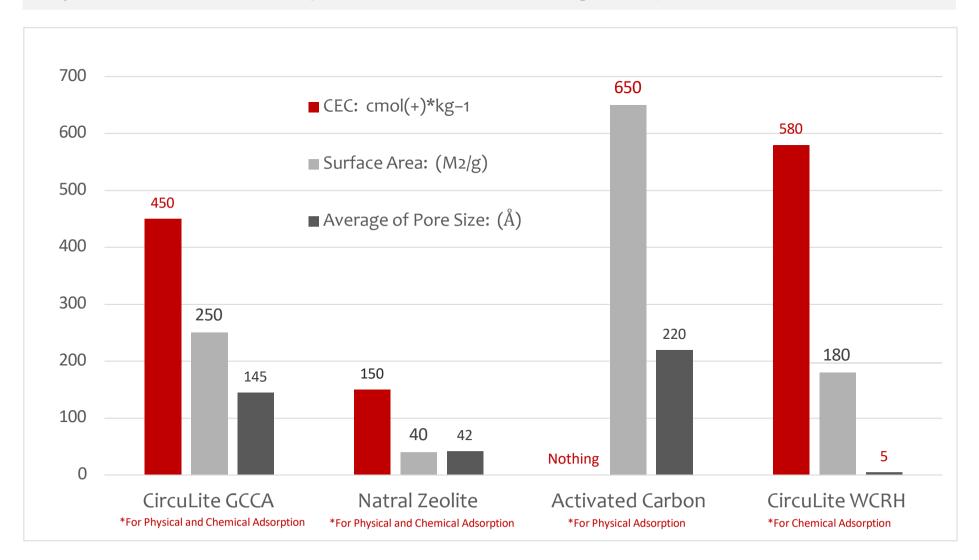
Appearance

^{*}Note-o1: We can recycle from various Waste Materials to Multi-Functional Material: CircuLite

^{*}Note-02: We have a technology to remove the Toxic Materials, Heavy Metals from Coal Ash. Therefore, you can expand the Market for Sustainable, Recycling-Based Society for achieving Goals of SGDs and Next Generations.

2-1. Technical Data: Comparison table: Performance



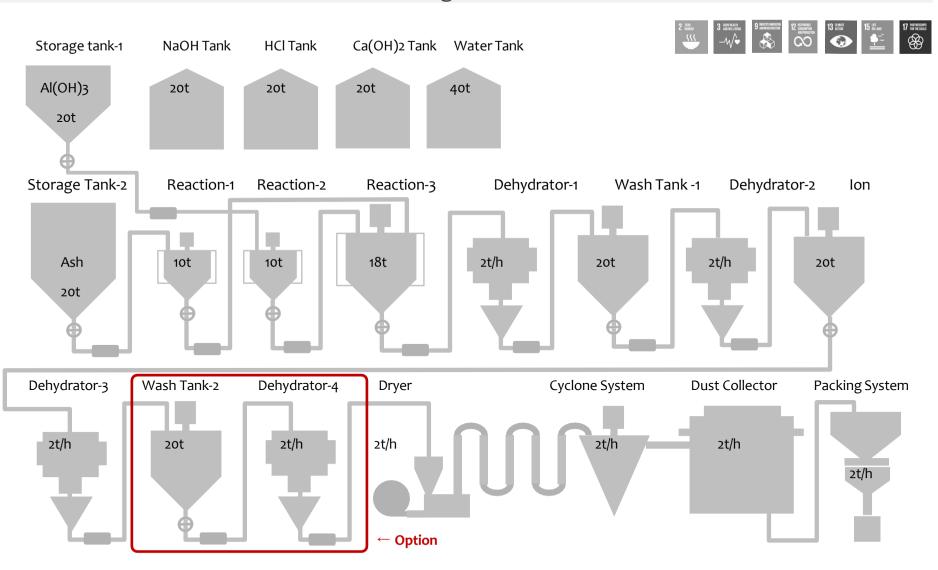


No.	Item/Material	CircuLite Recycled Material	Zeolite (Natural)	Zeolite (Synthesis)	Activated Carbon Standard Product
01	CEC [cmol(+) kg ⁻¹] *Ion Exchange Capacity	300 ~ 600	200 ~ 250	200 ~ 600	nothing
02	Surface Area (cm2/g)	100 ~ 400	20 ~ 120	80 ~ 200	300 ~ 800
03	Particle Size (mm)	0.003 ~ 0.100	0.001 ~ 2.000	0.002 ~ 0.010	0.1 ~ 20
04	Pore Size, Range (nm)	0.3 ~ 2.5 Micro, Meso, Macro	0.2 ~ 0.3 Micro	0.3 ~ 0.15 Micro	1.0 ~ 3.0 Micro, Meso, Macro
05	Electric Charge (Cation or Anion)	(+)(-)	(-)	(-)	Nothing
06	Oil Absorption Capacity (Against Own Weight: %)	55 – 65	15 - 18	8 - 15	22 - 34
07	Price (US\$/ton)	Depend on Production Scale	200 ~ 300	400 ~ 1,000	300 ~ 800

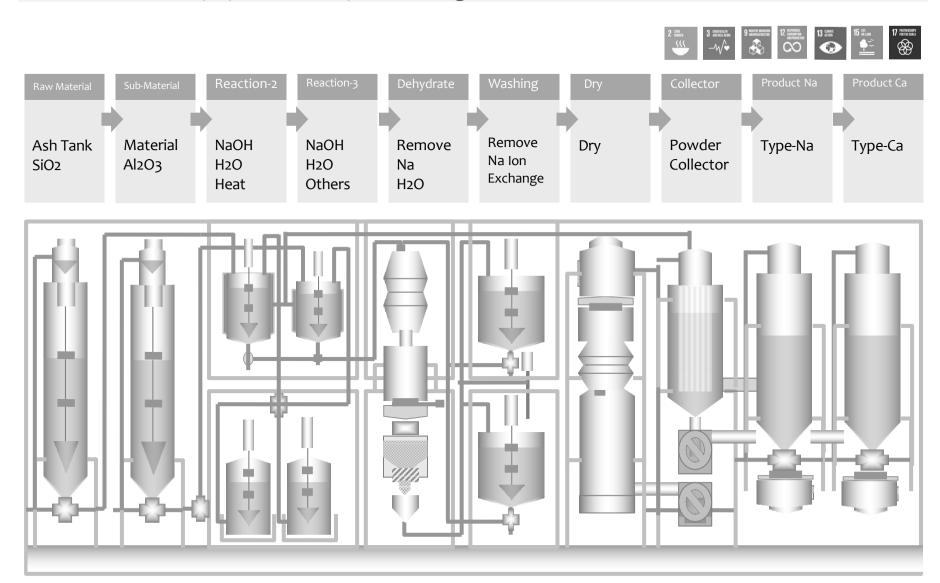
2-2. Technical Data: Comparison table: Pore Size Distribution

2-3. Technical Data: Comparison of Performance among similarly materials as Adsorbent

3-1. Application Technology: Types of Products of Recycled Products: CircuLite


1.	Raw Material	Coal Ash, Rice Husk Ash, etc.	Rice Husk Ash, Coal Ash, etc.	Rice Husk Ash, Coal Ash, etc.						
2.	Field	- Industrial	- Toxic Gas Remover	- Agriculture						
3.	Application	- Wastewater Treatment	- Toxic Gas Adsorbent	- Soil Optimization						
		- Heat Insulation Coating: *Paint	- Removing Heavy Metals	- Prevent Desertification						
		- Storage for Battery: *Porous	- Removing Toxic Materials	- Amend Poor Soils						
4.	Feature	- ION Exchanger	- Physical Adsorption: Porous	- Soil Conditioner						
		- White Color: for Cosmetic,	- Chemical Adsorption: Ion⁺	- Prevent Desertification						
		Medical, Tooth Powder, etc.	- Substitute for Activated Carbon	- For Economic Agriculture						
5.	Price	High Price: White Color	Middle Price: Gray Color	Low Price: Black Color						
6.	*Color Variation White Grey Black *Note: We can r	e.g., Coal Ash Based, etc.								
	*Note: We can recycle from various Waste Materials to Multi-Functional Material: CircuLite									

Section-02


Introduce our Technology

4-1. Outline of **CircuLite** Manufacturing Process

4-2. Outline Equipment for processing of CircuLite

4-3. CircuLite Manufacturing Equipment

Track Record: Case - Raw Material: Rice Husk

Combustion furnace

First Reaction Tank A, B

3rd. Main Reaction Tank

Dehydrator-1

Dehydrator-2

Slurry Plumbing System

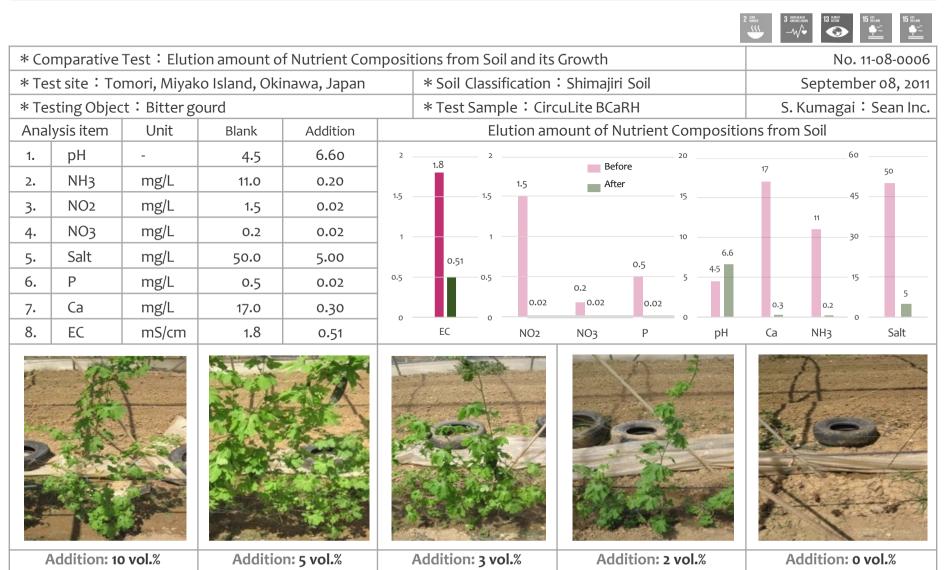
Dryer + Power Collector

Electorical Control

Section-03

Introduce Application of CircuLite

5-1. Application Table of CircuLite

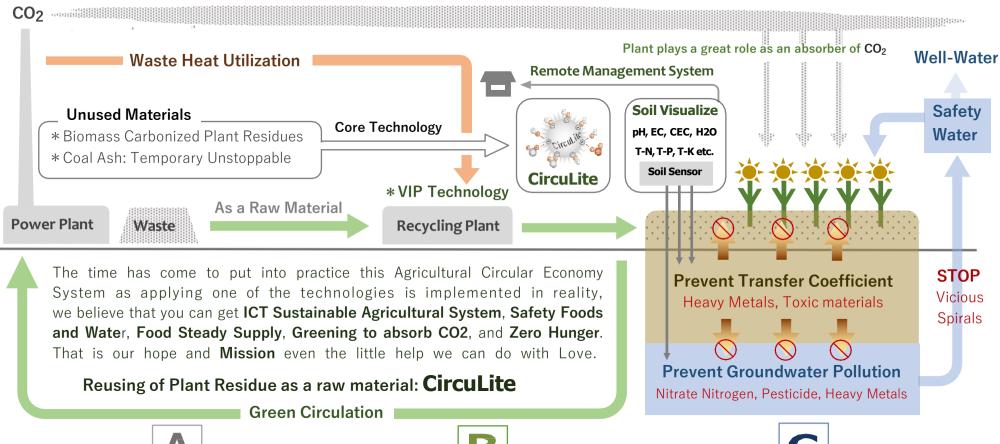


No.	Category	Daily Uses	Industrial Uses	Public Uses
1.	Chemical Adsorption [CEC]	Water Softeners: DetergentWater Purifiers: For DrinkDetergent: SofteningFor aquarium Fish	River Purify: Concrete Water Retaining for Asphalt Farm of fish, shrimp Polluted Soil: Heavy-Metals, Oil etc.	
2.	Physical Adsorption [Porous]	Deodorant: Restroom Air Purifier (HITACHI) Dehumidification: Room Cosmetics	Deodorant for Industrial Remover of Harmful Gases Oil Adsorbent: case of emergency Breeding Feed: Intestine function	Soil Decontamination: Cs (Fukushima Radioactive) Asphalt: - Permeability - Prevent Heat Island Phenomenon - Prevent Track Digging
3.	Microbe [Bacterium] [Anti-Virus]	Soil amend for Gardening Fermentation Accelerator Water Retaining Air Purifier: Anti-Virus Mask – Filtration, Anti-Virus	Bio Reactor: Microbe Proliferation Soil Amendment: Agrochemical Ferment for Compost Feed: Cattle, Pig, Chicken Feed of farm: Fish `Shrimp	Purify of pond, river, sea River Biological Diversity Biological Reactor
4.	Impregnation	:Aromatherapy (Anti-Virus)	Secondary Products : Paint, Fabric	Insect Proof: Mosquito, Mite
5.	Education	Environmental Study	Study environmental science	Environmental Research

5-2. Application: Agriculture - Improving degraded soil by CircuLite

Initiative: ICT Agricultural Circular Economy System by Recycled Functional Material: CircuLite

To Provide Composite Agricultural Impacts and Rational System: As a Venous Industry ICT Administrate Agri-Factory Systems by recycled Local Waste



Solve the Local Issues
By Recycled Local Waste

Utilized Local resources for solutions in Local area

Transfer Coefficient

Pesticide, Heavy Metals, Radioactive Substances

Ground Water
Contamination Control

Nitrate Nitrogen, Pesticide,

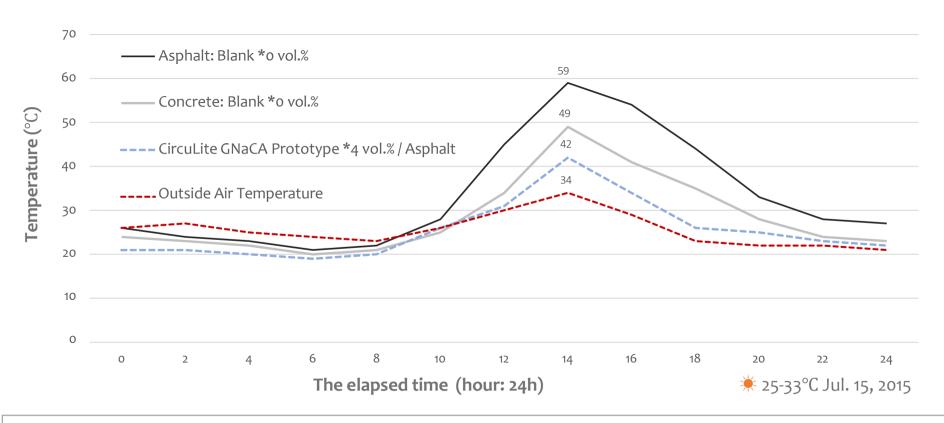
Heavy Metals, etc.

Sion Corporation

5-4. Application: Soil Decontaminate Test: Radioactivity Contaminated Soil

Test of Effect EC of contaminated soil	Test of crop growth for add CircuLite	Test of Adsorptive immobilization: Cs							
Comparative Test : Electric conductivity of Soil (ds/m) 1.6	Comparative Test: Plant Weight (g) 250	Comparative Test: Transfer Amount (Bq/kg) Cs-134, Cs-137							
1.4 1.2 1.2 1.2 0.8 0.6 0.4 0.2 0.4 0.2 0.8 Circulite 3 vol.% Circulite 5 vol.% Zeofile KO	200 Plant Weight 200 150 140 100 Blank Circulite 3 vol.%Circulite 5 vol.% Zeolite KCI	70							
Experimental Plot	Experimental Plot	3 vol.% 5 vol.% Experimental Plot							
Soil improvement for EC of Soil using CircuLite mixed in soil.	Soil improvement for crop growth using CircuLite mixed in soil.	Prevent to transfer coefficient Cs from radioactive contaminated soil.							

5-5. Application: Change of temperature of Surface on the Road Bed Materials



Change of temperature test: Surface on the road bed materials

Keyword: Porous, Water holding property, Heat of vaporization, Heat island phenomenon

5-6. Application: Harmful substances and Toxic Gas Removal System for Industry.

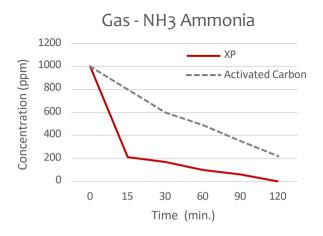
Appearance of Removal System

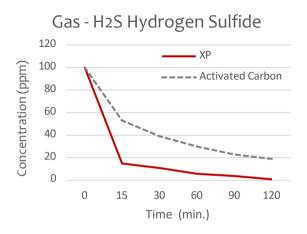
Removable substances and gas by CircuLite

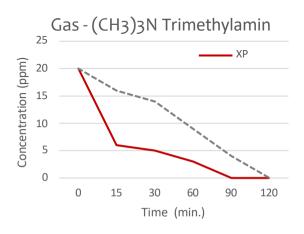
1,0	removable substances and gas by Circulite										
No.	Case: Object Toxic Gases	Chemical Formula									
1.	Ammonia	NH3									
2.	Methyl Mercaptan	CH4S									
3.	Hydrogen Sulfide	H ₂ S									
4.	Methyl Sulfide	C₂H ₆ S									
5.	Trimethylamine	C ₃ H ₉ N									
6.	Acetaldehyde	C ₂ H ₄ O									
7.	Styrene	C ₈ H ₈									
8.	Phenol	C ₆ H ₆ O									
9.	TDI: Toluene Diisocyanate	$C_9H_6N_2O_2$									
10.	MDI: Methylenediphenyldiisocyanate	C ₁₅ H ₁₀ N ₂ O ₂									
11.	11. Toluene C ₇ H ₈										
12.	Xylene	$(CH_3)_2C_6H_4$									
13.	Acetaldehyde	C ₂ H ₄ O									
14.	Sulfur Dioxide	SO ₂									
15.	Carbon Dioxide	CO ₂ (GHG)									
16.	Oil Mist	Fuel Oil, Lubricating Oil, Hydraulic Oil									
17.	Fume	Compound of Pb, Hg, Cd, Cu									
18.	VOCs	Volatile Organic Compound Group									

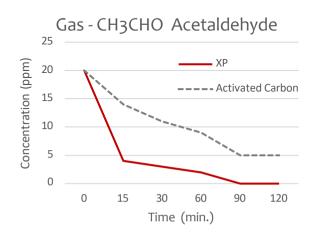
^{*}CircuLite Market is increasing as Industrial Adsorbent in over than seven hundred factories in the world.

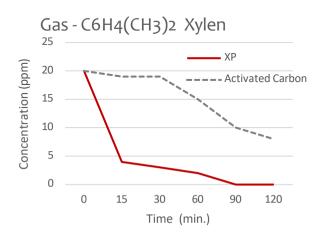
5-7. Application: Odor Deodorant & Purify in Industrial Field

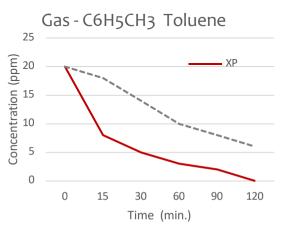


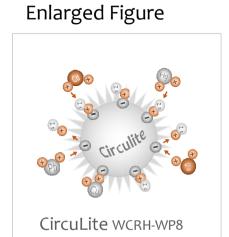




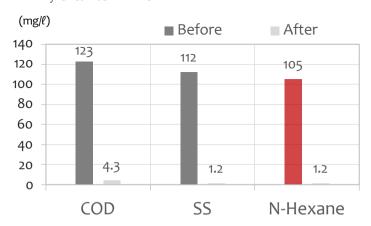








5-8. Application: Wastewater Purification in Industrial Field

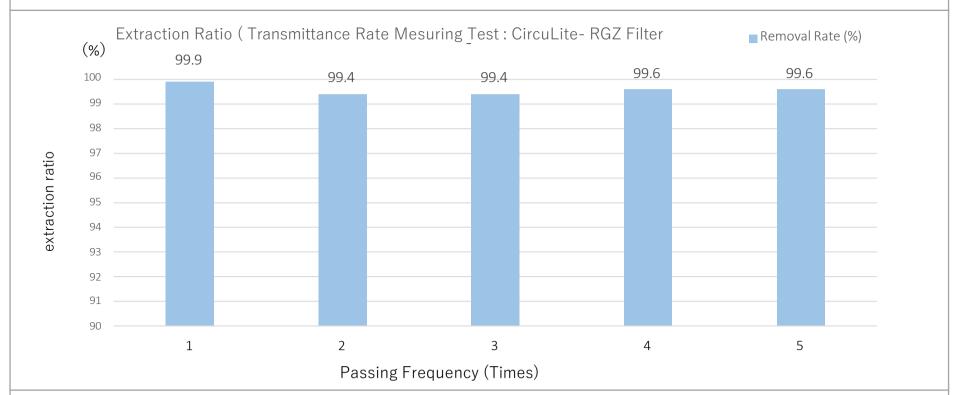


Before

 (mg/ℓ) ■ Before After 30 27 25 21 20 15 12 9.2 10 7.3 1.1 0.2 0.09 0.05 Cu Cr Pb As рН

Result: Waste Water PurificationBy CircuLite WP-WCRH-WP8

5-9. Application: Anti-Bacterial Material – Non-Woven Material with CircuLite – RGZ JIS K 3703-3:2008



- * Testing Object: Staphylococcus Aureus JIS K 3703-3:2008
- * Test Sample: CircuLite RGZ * Processing Material: Non-Woven Fabric with CircuLite RGZ

Test of Effect EC of contaminated soil

^{*}Analysis Method: CNS 14774 T5017-2011 9.2, CNS 14775 5017 - 2003, *Test Area: 39.5 (cm2),

^{*} Average Particle Diameter: 2.8 (μ m), *

6-1. Procedure: About the Evaluation of this Business Potential by processing of graded steps

*	Sections		Action Matters		Evaluation items		2019												Expense Items (Unit: USD)	
-1-					Evaluationnems			3	4	5	6	7	8	9	10	11	12		-xperise items (onit. 03b)	
	Phase - 1	1.	Conclusion Basic Agreement	1.	CEC													1.	Technical Processing Fee	
		2.	Delivery of Unused Material: 2 kg	2.	XRD													2.	Basic Analysis Fee	
		3.	Analysis Residues	3.	SEM													3.	Personnel Fee	
		4.	Evaluation Residues	4.	Safety													4.	Report Documentation Cost	
		5.	Evaluation Product	5.	Component															
Α		6.	Comprehensive Possibility Study	6.	Pore Size Distribution															
				7.	Specific Gravity															
				8.	Particle Size Distribution															
				9.	Analysis for Safety															
				10.	Report Documentation, Briefing Session													Tota	al:	
	Phase - 2		Research of Facilities		High O although on Cont														Research of Facilities Fee	
	Pilase - 2	1.		:	High Quality, Low Cost									-				1.		
		2.	Instruction of Machinery Technology	:	Disclose the Know-How in details									-				2.	Technical Instruction Fee	
		3.	Inspection Manufacturer Factory	:	Three Members													3.	Personnel Fee	
В		4.	Collection of Estimates	:	Basically, Procure in Local, Taiwan, etc.													4.	Transportation Expenses	
		5.	Calculation Cost for Business	:	Evaluation of Profitability													5.	Calculation Cost Fee	
		6.	Report Documentation	:	Report Documentation, Briefing Session													6.	Report Documentation Cost	
																		Tota	al:	
	Phase - 3	1.	Survey Local Conditions	1.	Infrastructure, Water, Electricity, Site, etc.													1.	Survey Cost	
C		2.	Structure Local Business Formation	2.	Government, Company, University, etc.													2.	Personnel Fee	
C		3.	Raising Funds	3.	Public Budget, Bank, etc.													3.	Transportation Expenses	
																		Tota	al:	
D	Phase - 4	*	Conclusion Technical Contract		Technical Transfer Fee, etc.															

Introduction: Personal History

- NAME (Technical General Manager): Shunsuke KUMAGAI Live in Tokyo, Born in Fukuoka, Japan, raised in Nagano
- Registrate Qualification: Environmental Consultant Registered by Department of Environment of Japan
- Academic Background
- 1. Ehime Univ.: Agriculture Trainee Class Synthesis of Functional Compound Material to utilize Residues.
- 2. Waseda Univ.: Human Environmental Science Dept. Global Environmental Science Subject.
- Main Career
- 3. Practical Use 1. Circular Economy Business: Factory of Recycling Coal Ash Based (Chubu Electrical Power, Japan)
- 4. Practical Use 2. Circular Economy Business: Factory of Recycling Rice Husk Ash Based (Fujian Province, China)
- 5. Japan Forestry Agency Hazardous Materials R&D Insect Pest Control (Subsidy of Research)
- 6. Yokohama City Government SBIR (Subsidy of Implementing R&D Recycling of Sewage Sludge Ash)
- 7. R&D Project 1: Purification of the type of Closed Water Area (Research Funds Yokohama City Association)
- 8. R&D Project 2: Dustproof & Anti-weed of Ground (Research Funds Yokohama City Association)
- 7. R&D Project 3: Purification of the type of Biodiversity of Closed Water Area (Research Funds Yokohama City Association)
- 8. R&D Project 4: R&D of Environmental Education Tools and Method (Research Funds Gakken Holdings)
- 9. R&D Project 5: Toxic Gases Removal Equipment for industrial (Collaborate R&D: AMANO, HITACHI, FUJITSU)
- 10. R&D Project -5 ·· Industrial Wastewater Treatment (Heavy Metal, Oil content)
- 11. Research-1··Prevent method of Contaminate Underground Water for vicious circle of chemical elements from poor soils.
- 12. Research-2·Improvement methods of Subsurface Soil Quality to adsorb the effective fertilizer from Red Soil. (Okinawa Pref.)
- 13. Research-3·Developed New Materials to Recycle method of unused resources (Taiwan National Science Technology Univ.)
- Activities for Environment for SDGs
- 1. Environmental Technology Transfer(Contribute for World Environmental Solutions): Asia, US, etc. with UNIDO
- 2. Decontamination of Fukushima: Water purification and Soil Decontamination, Volume Reduction (Ministry of Agriculture, Japan)
- 3. Environmental Education for Developing countries: Solomon (Technical Personnel Dispatching JICA)
- 4. New Functional Materials recycling unused residues: R&D: International Patent Application within 2020.
- 5. Registered Environmental Technology by UNIDO of United Nation.
- 6. R&D: Pest Repellent for Mosquito, Mite, Leech, etc. (Collaboration Funds by Private Company)
- 7. R&D: Recycling Method of Plant-Based Residues (Malawi, Côte d'Ivoire, Morocco, Hong Kong, Cambodia, Myanmar,)

Thank you very much for your kind attention!

Mohammed ELSHERBINII M.D, Ph.D The University of Tokyo

Shunsuke KUMAGAI CTO Waseda Univ.

Sachiya KOSUDA EES Team Aoyama-Gakuin Univ.

Maya MIYASHITA CEO Japan Women's Univ.

Eddy Sun zhiyi EES Team KYOTO Univ.

Ahmed ELSHERBINI DDS, Ph.D The University of Tokyo

Sean Shunsuke KUMAGAI

Environmental Counselor: Ministry of Environment, Government of Japan

SION Corporation

Tel: 03-5962-7239 #502, 3-14-2 Akasaka, Minato Ward, Tokyo, Japan

