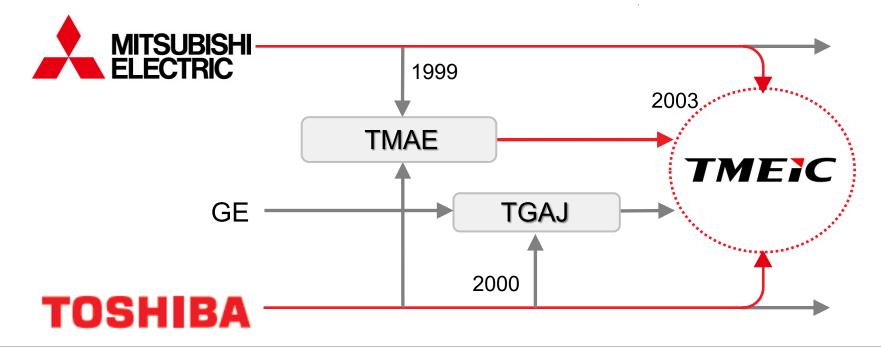


Microgrid Design and Operation: TMEIC Proposal

2025年01月15日 Industrial and Energy Systems Division 1 Ph.D. Hieu Nguyen

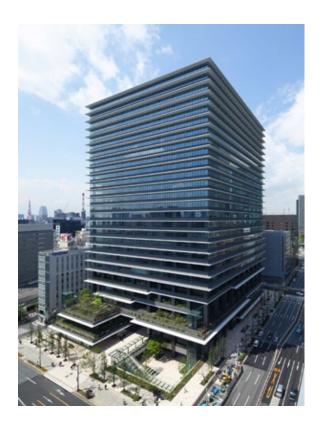
Confidential

TME^IC

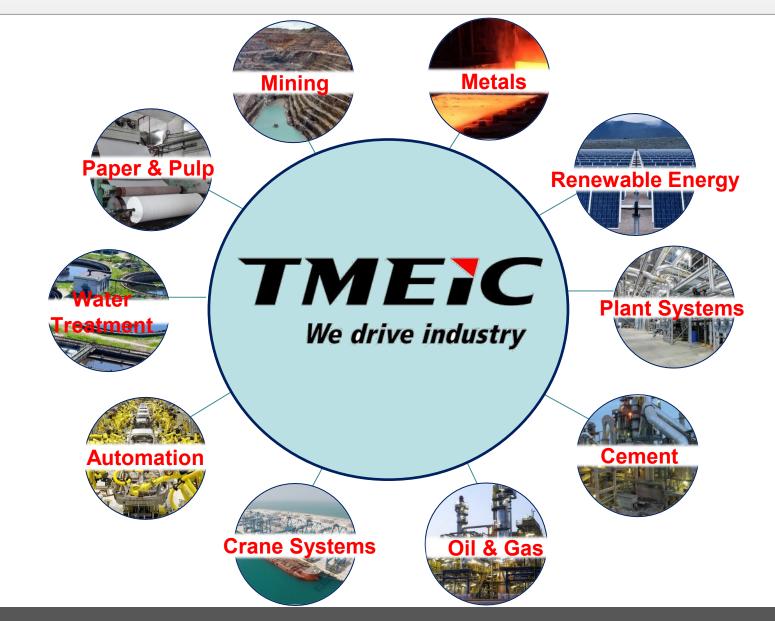

We drive industry

- TMEIC: Who We Are?
- ESS for Microgrid: TMEIC's Proposal
- Grid Forming Inverter: A Key Technology for Microgrid

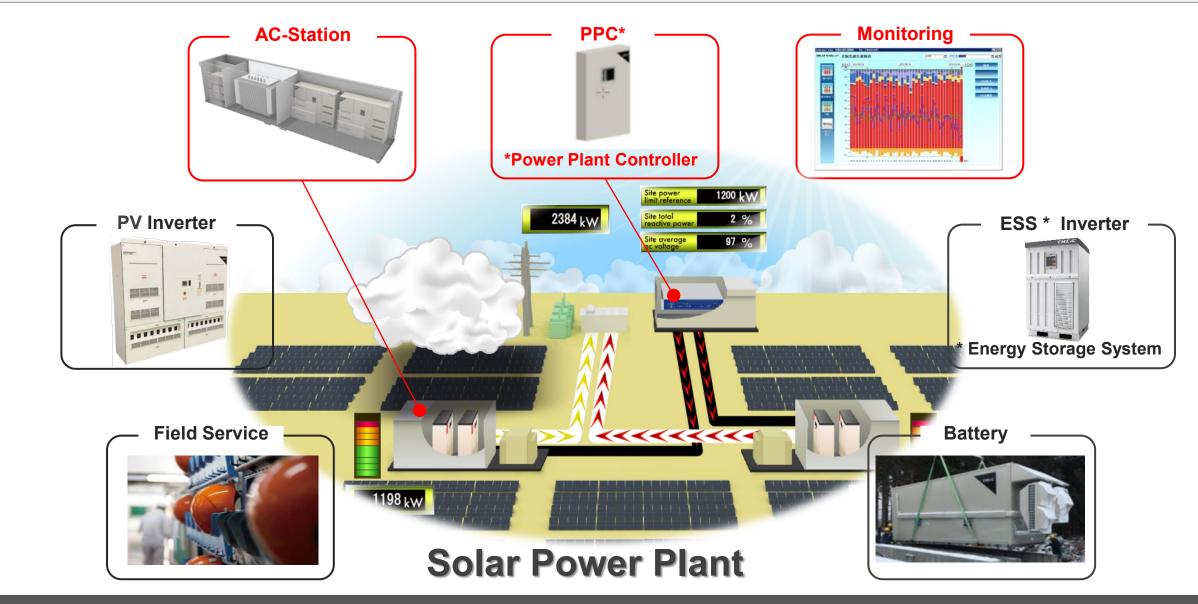
Established in 2003 through the integration of the industrial systems divisions of Toshiba Corporation and Mitsubishi Electric Corporation, and TMA Electric Corp. (TMAE), and Toshiba GE Automation Systems Corp. (TGAJ).



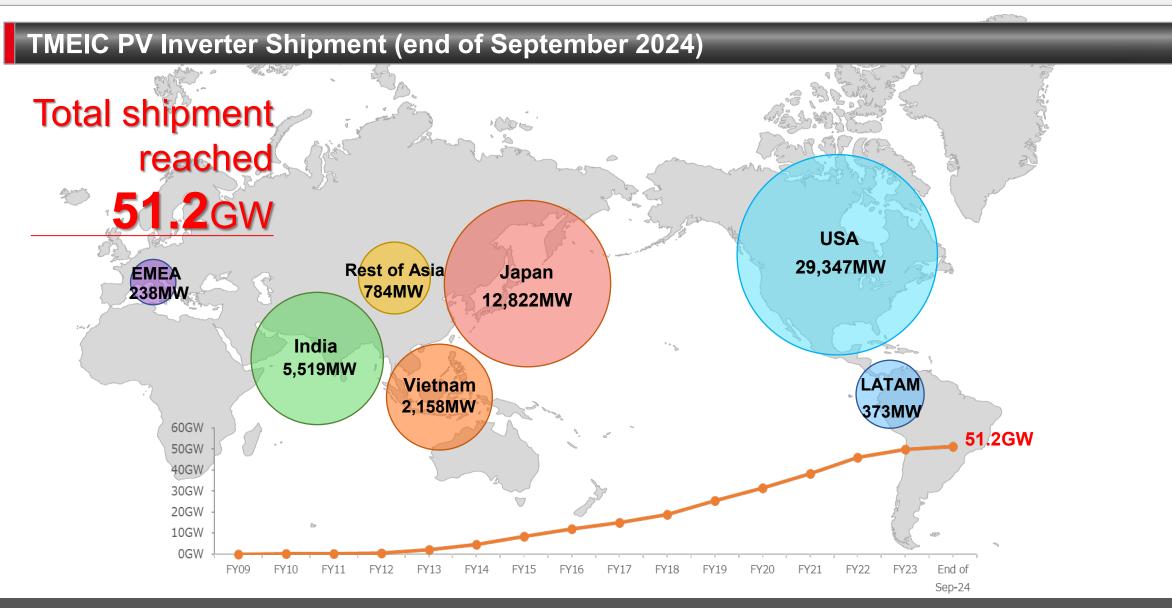
Shareholders: 50% Toshiba Infrastructure Systems & Solutions Corporation (*wholly owned subsidiary of Toshiba Corporation) 50% Mitsubishi Electric

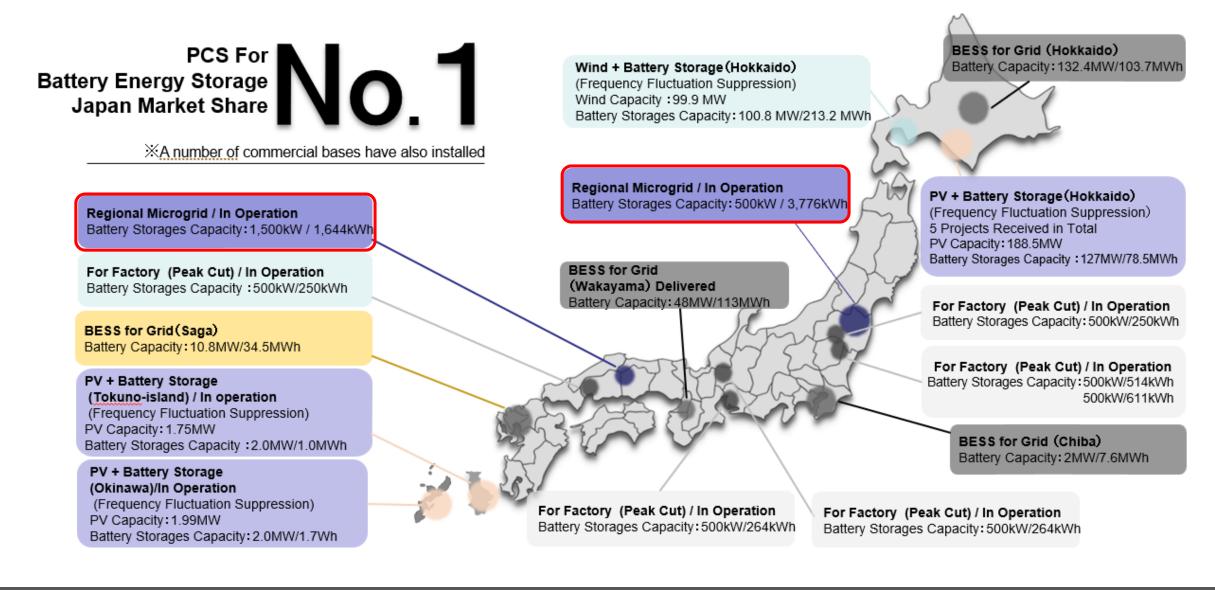

Corporate Profile

Start of Operations	October 1, 2003
Capital	JPY 15,000,000,000
Investment Ratio	Toshiba 50%; Mitsubishi Electric 50%
Head Office	TOKYO SQUARE GARDEN, 3-1-1 Kyobashi, Chuo- ku, Tokyo 104-0031, Japan
President & CEO	Akira Kawaguchi
Group Companies	Japan:1, Overseas:15 (incl. Affiliate: 1)
Number of Employees	4,505 Worldwide as of March 31, 2023



TMEIC Headquarter (Tokyo Square Garden Bldg.)




TMEIC Global Network

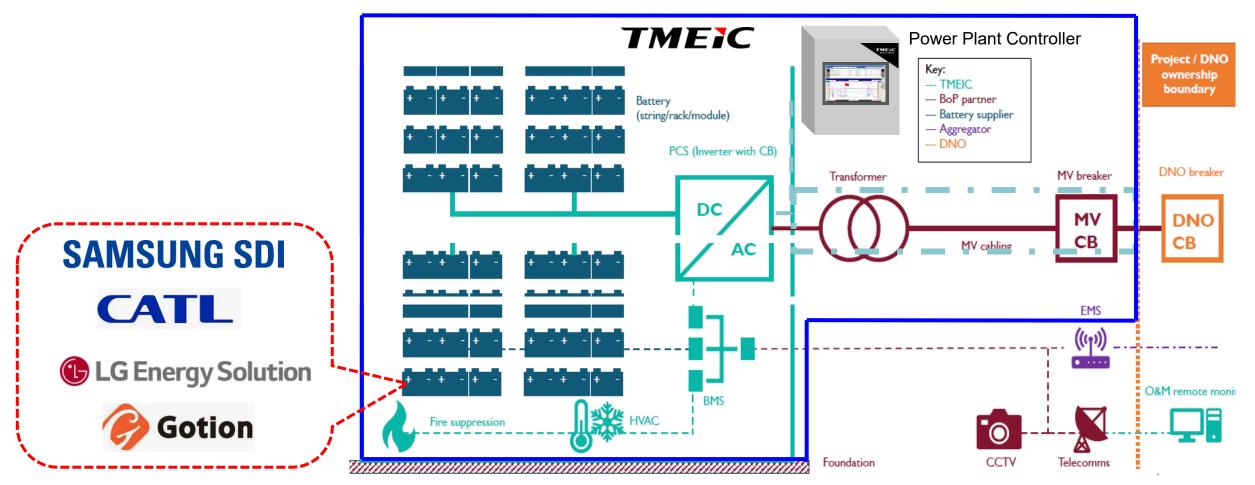
TMEIC We drive industry

Hokkaido (Shiriuchi) PV Panel installed capacity 24MW Interconnection output 17.5MW Installed storage battery output 12.5MW, capacity 7.2MWh

Hokkaido (Yakumo) PV panel installed capacity 102.3MW PV output 75MW Battery storage system capacity : Output 52.5MW/27MWh

Kyushu (Tokuno-Island) PV panel installed capacity 2.6MW Interconnection output 1.75MW Installed storage battery capacity 1.029MWh High input / output characteristics(2CA), Controlled by 2MW PCS

Hokkaido (Abira) PV Panel output 64.6MW PCS output 48MW Battery storage system capacity : Output 34MW/17.5MWh,


<u>Commencement of operation in July 2023</u> (Tollgate 49.5MW/49.5MWh)

ESS Typical Configuration and Scope of Supply

Confidential

Inverter for PV projects

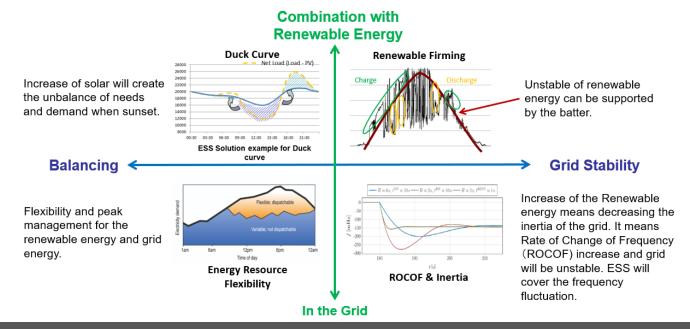
SOLARE WARE U Specification

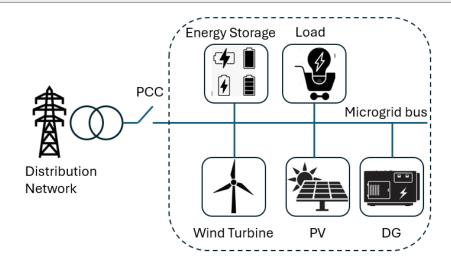
	Item	PVU-L0800ER	PVU-L0840ER	PVU-L0880ER	PVU-L0920ER		
	Rated Power	800kW / 800kVA	840kW / 840kVA	880kW / 880kVA	920kW / 920kVA		
Outrast side	Rated Voltage	600V	630V	660V	690V		
Output side	Rated Frequency		50Hz / 60Hz (+0.5Hz, -0.7Hz)				
(AC)	Rated Current		702Arm:	s @50°C			
	Maximum Current		770Arm:	s @25°C			
	Maximum Power@98%Eff.	816kWp	857kWp	898kWp	939kWp		
Input side	Maximum Voltage		1500)Vdc			
(DC)	MPPT Operation Range (starting-up from 1450V)	875Vdc ~ 1300Vdc	915Vdc ~ 1300Vdc	960Vdc ~ 1300Vdc	1005Vdc ~ 1300Vdc		
Ma	aximum Efficiency 💥		99.1%	% (XX)			
Weight X < 1000kg		00kg					
Inverter	Dimensions (W X H X D)	1100 X 2000 X 1100 mm (W X H X D)					
	loor space (W x D)	1.21m2					
Enclos	sure Protection Ratings		IP 55/ N	EMA 3R			
	Installation		Out	door			
Ambie	ent Temperature Range			50°C			
	Maximum altitude		2000m (>2000m power	derating (Max.4000m))		
С	ommunication type		Modbus,	Ethernet			
Sta	Standards Compliance UL1741, UL174SA / IEEE1547 / NEC2017, IEC62109-1,2 / IEC61000-6-2,4 / IEC IEC62116 / IEC61400, BDEW / IEC61683 / IEC60068						
Stan	ndard Number of Input	umber of Input 6 (Maximum 8 per Inverter) Each input rating is a maximum of 400A		um of 400A			
	AC protection Fuses						
	DC protection	Fuses					
Μ	PPT number for PV	1					
Standard Control Power Supply		Control Power Supply f	rom Inverter output and	Capacitor backup circu	it (3sec. compensation)		

Inverter for ESS projects

SOLARE WAR	RE U Specification						
	Item	BSU-L640ER	BSU-L0800ER	BSU-L0840ER			
	Rated Power	640kW / 640kVA	800kW / 800kVA	840kW / 840kVA			
Output side	Rated Voltage	480V (+10%, -12%)	600V (+10%, -12%)	630V (+10%, -12%)			
(AC)	Rated Frequency	50Hz / 60Hz					
(AC)	Rated Current		702Arms @50°C				
	Maximum Current		770Arms @25°C				
Input oido	Maximum Power	653kWp@98% Efficiency	816kWp@98% Efficiency	857kWp@98% Efficiency			
Input side	DC Voltage Range	710Vdc ~ 1300Vdc	875Vdc ~ 1300Vdc	915Vdc ~ 1300Vdc			
(DC)	MPPT Operation Range		N/A				
Ma	aximum Efficiency 🔆		99.1%				
	Weight		<1000kg				
Inverter	Dimensions (W X H X D)	1100 X 2000 X 1100 mm					
F	loor space (W x D)	1.21m2					
Enclos	sure Protection Ratings		IP55 / NEMA3R				
	Installation		Outdoor				
Ambie	ent Temperature Range	-25 ~ 50°C					
Maximum altitude		2000m					
		>2000m power derating (Max.4000m)					
C	ommunication type		Modbus TCP				
		UL1741, UL174SA / IEEE1547 / NEC2017					
Sta	andards Compliance	/ IEC61000-6-2,4 / IEC61727, IEC62116 /					
		IEC61400, BDEW/ IEC60068					
Standard Number of Input		1					
AC protection F		Fuses					
DC protection Fuses							
Standa	rd Control Power Supply	Control Power Supply from Inverter output					
Standard Control Fower Supply		and Capacitor backup circuit (3sec. compensation)					

Inverter for ESS projects


	Item	BSA-L1400ENN/UNN	
	Rated voltage	660V	
$O_{\rm extract}$ aida (AC)	Rated power @25°C, 1480V, 660Vac	1400kW	
Output side (AC)	Rated current $@25^{\circ}C$	1225Arms	
	Rated frequency	50Hz/60Hz	
Input side (DC)	DC voltage range	1000Vdc~1500Vdc	
Μ	laximum efficiency	98.5%	
Inverter dimensions		1,540x2,000x2,040mm	
	Weight	≤2,000kgs	
	Enclosure rating	Inverter Station (IP55)	
Installation		Inverter Station: Outdoor	
	AC protection	Breaker	
DC protection		Fuses	
Communication Controller - SCADA		Modbus TCP	

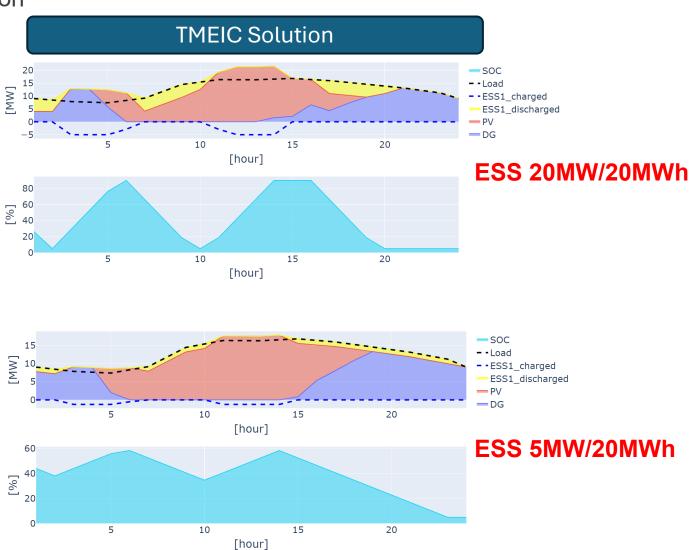


- Increase in requirement for microgrid design with energy storage system (ESS) in ASEAN e.g. industrial parks, islands (Indonesia, Philippine), etc.
- ESS application for microgrid
 - Support PV from system operational point of view
 - Maximize operational revenue
 - Support to realize a microgrid without DG by grid forming inverter (GFM) technology

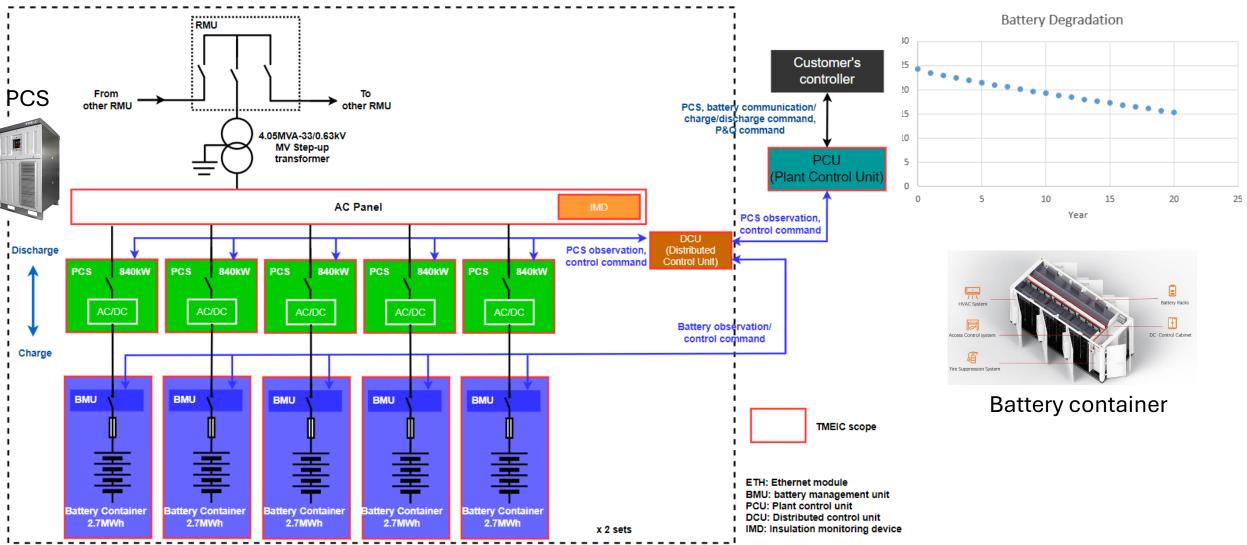
TMEIC Will Provide

- System design for PV and/ or ESS projects
- Revenue simulation and analysis
- Energy storage system operational profile
- Plant control system

Example: confirm the revenue via design & simulation

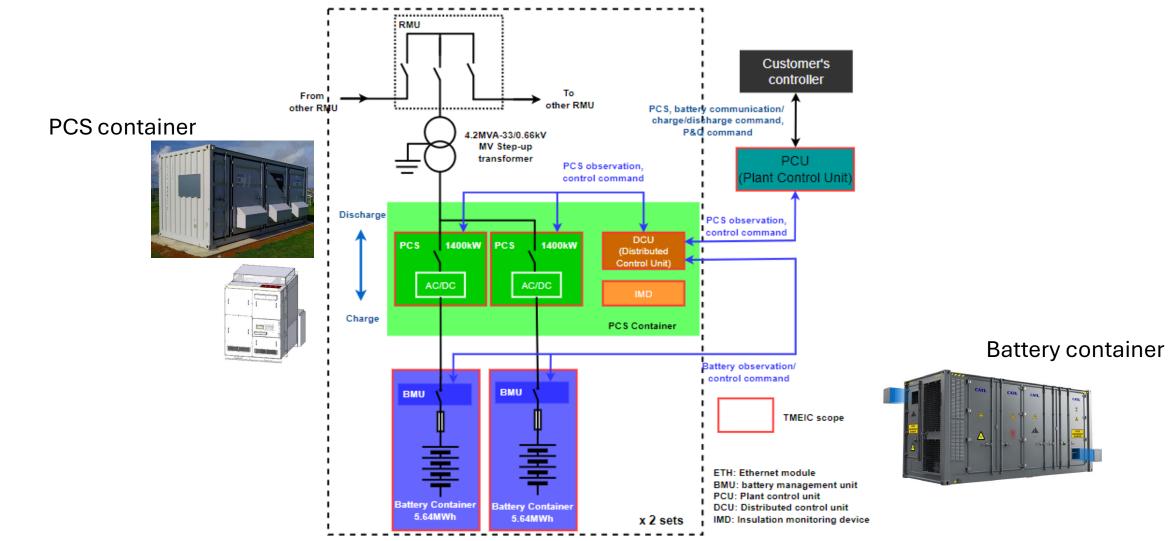

Input

- Fuel cost (diesel generators, etc.)
- Capacity of generation sources, load profile, etc.


		U	uipui
	, A		В
	hour		out_pu
		0	0
		1	0
		2	0 0 0
		3	
		4	0.19
		5	0.38
		0 1 2 3 4 5 6 7 8 9 10	0.57
		-7	0.75
)		8	0.87
		9	1
2		10	0.92
3		11	0.85
╞		12	0.72
j		13	0.57
)		14	0.42
1		15 16	0.28
2 3 4 5 7 8		16	0.19
		17	0.09
)		18	0
		19	0
2		20	0
3		21 22	0
? } }		22	0 0 0 0 0
5		23	0

PV output

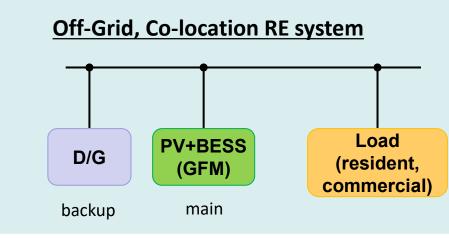
Load				
A		В		
hour		MW		
	0	90.25882		
	1	84.32941		
	2	78.4		
	3	76.09412		
	4	73.78824		
	5	82.68235		
	6	91.57647		
	- 7	117.9294		
	8	144.2824		
	9	153.8353		
	10	163.3882		
	11	163.0588		
	12	162.7294		
	13	165.3647		
	14	168		
	15	163.7176		
	16	159.4353		
	17	152.5176		
	18	145.6		
	19	138.3529		
	20	131.1059		
	21	121.5529		
	22	112		
	23	90.25882		



ESS 5MW/20MWh

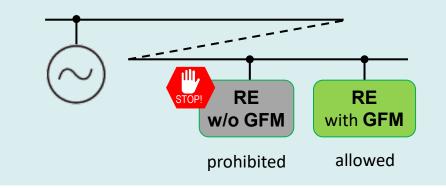
TMEIC We drive industry

ESS 5MW/20MWh



Power Resources Characteristics

	Synchronous Generator	Conventional Inverter (GFL)	Grid forming Inverter (GFM)
Inertia as energy buffer	(Physical inertia)	N/A	(Synthetic inertia)
Frequency response	✓	•	~
Stable Operation in IBR-rich grid	✓	N/A	~
Islanding operation	✓	N/A	~
Adoption in industry	✔ (Widely-used)	(Widely-used)	Approaching Market Entry



Effective Utilization of GFM

- GFM becomes possible to supply electricity solely through PV generation during daylight hours
- Black-start of RE power output is possible without other generators
- 100% Renewable Energy supply or "RE with backup generation" can be designed

Connecting to weak/unstable Grid

- Conventional RE plants cannot connect to an unstable Grid, but GFM can connect instead
- GFM function provides inertia and frequency response capability to unstable power system

ATTRACTIVE OPPORTUNITIES IN THE GRID-FORMING INVERTER MARKET

Growing

renewable

adoption

energy

integration of clean energy

into the grid are key factors

driving the market growth.

of

and

Market growth in the Asia Pacific can be attributed to increased renewable energy generations and need to reliability of the support such diversified power mix.

The Asia Pacific grid-forming inverter market is expected

The Asia Pacific grid-forming inverter market is expected to be worth USD 483 million by 2028, growing at CAGR of 9.5% during the forecast period. High Cost of Manufacturing is expected to pose a challenge to the growth of this market.

Facilitating rapid grid recovery

after outages and reduce

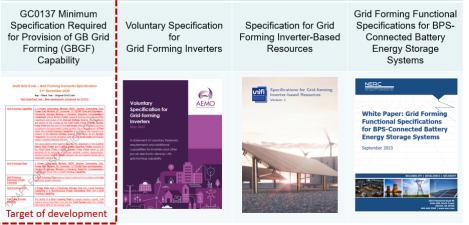
economic losses is few of the

factors expected to provide

lucrative opportunities for

associated

downtime and

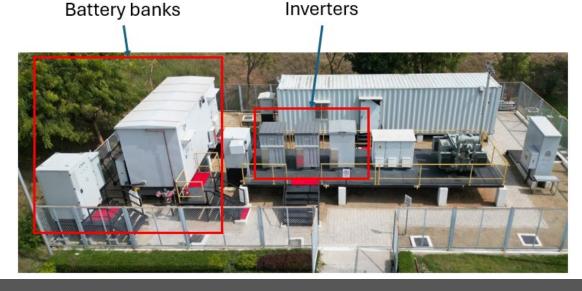

market players.

Report Metric	Details
Market Size available for years	• 2021–2028
Base year considered	• 2022
Forecast period	• 2023–2028
Forecast units	Value (USD Million)
Segments covered	By Type, By Application, By Voltage, By Power Rating, And By Region
Geographies covered	Asia Pacific, North America, Europe, Middle East & Africa, and South America
Companies covered	 Huawei Technologies Co. Ltd. (China), General Electric (US)Power Electronics (Spain), SMA Solar Technology (Germany), Games Electric (Germany), and FIMER (Italy), Growatt New Energy (China), TBEA Xingjiang Sunoasis (China), Fronius International (Austria), Goodwe (China), Schneider Electric (France), SolarEdge Technologies (Israel), Sungrow Power Supply (China), Delta Electronics (UK) and Enphase Energy (US), Altenergy Power System (US), Sensata Technologies (US), Delphi Technologies (UK), TMEIC (Japan), and KACO New Energy (Germany)

Market Player

Source: MarketsAndMarket

National Grid ESO (UK)AEMO (Australia)Fraunhofer ISE (Germany)"Compliance Guidance Notes for NOA Stability Compensation Service""Voluntary Specification for Grid-Griming Inverters: Core Requirements Test Framework"Specification for Grid Forming Inverter-Based Resources"Test procedure mainly for off-line simulationTest procedure for actual machineTest procedure for off-line simulationTest procedure for (distrain)Mathine for for (Justralia)Milline for (Justralia) <td< th=""><th></th><th></th><th></th><th></th><th></th></td<>					
NoA Stability Compensation Service"Grid-forming Inverters: Core Requirements Test Framework"Specification for Grid Forming Inverter-Based Resources"Test procedure mainly for off-line simulationTest procedure mainly for off-line simulationTest procedure mainly for off-line simulationTest procedure mainly for off-line simulationImage: Strate Stra		<) (4			
off-line simulationoff-line simulationactual machineImage: State of the simulationImage: Sta	NOA Stability Compen	sation Grid-form	ning Inverters: Core		
<image/> <complex-block><complex-block><complex-block><complex-block><complex-block></complex-block></complex-block></complex-block></complex-block></complex-block>			· · ·	· · · · · · · · · · · · · · · · · · ·	
National AEMO UNIFI NERC	Compliance Works for NAS Society Complexation Barvice Prace 2 Version 1 November 2021		Contract Calarie of did loading Calaries Sector and the sector a		
	Target of development				
			•••••		



Single GFM Unit Test

Test was carried out in Fraunhofer (Germany) in Jul. 2024

Multiple GFM Units Test (Jan. 2025 in ESS lab, Bangalore)

- Grid-connected GFM test
- Off-grid GFM test
 - Parallel operation of 3 inverters
 - Loss of mains test
- Validate the tests which were carried out at Fraunhofer

THANK YOU FOR LISTENING

